• Title/Summary/Keyword: brain ischemic stroke

Search Result 187, Processing Time 0.034 seconds

Acute Ischemic Stroke in Moyamoya Syndrome Associated with Thyrotoxicosis

  • Kang, Donggook;Seong, Gi-Hun;Bae, Jong Seok;Lee, Ju-Hun;Song, Hong-Ki;Kim, Yerim
    • Journal of Neurocritical Care
    • /
    • v.11 no.2
    • /
    • pp.129-133
    • /
    • 2018
  • Background: A few cases of moyamoya syndrome associated with thyrotoxicosis have been reported. However, studies on the association of hyperthyroidism with moyamoya syndrome are insufficient. Case Report: Here we report a case of hyperthyroidism associated with moyamoya syndrome in a 41-year-old woman with aphasia and right side weakness. Brain imaging revealed acute cerebral infarction of left middle cerebral artery territory and occlusion of bilateral distal internal carotid arteries. Conclusion: Antithyroid medication stabilized the patient's neurologic deterioration, suggesting that thyrotoxicosis could aggravate acute cerebral infarction caused by moyamoya syndrome.

Cerebral salt wasting syndrome caused by external lumbar drainage in a patient with chronic hydrocephalus

  • Yoo, Je Hyun;Park, Ki Deok;Lim, Oh Kyung;Lee, Ju Kang
    • Annals of Clinical Neurophysiology
    • /
    • v.24 no.1
    • /
    • pp.30-34
    • /
    • 2022
  • In cases of hyponatremia induced by brain damage, it is important to distinguish between the syndrome of inappropriate anti-diuretic hormone secretion (SIADH) and cerebral salt wasting syndrome. A ventriculoperitoneal (VP) shunt is the standard treatment for hydrocephalus, and external lumbar drainage (ELD) is an option to evaluate the effect of a VP shunt. However, ELD has potential complications, such as subarachnoid hemorrhage, meningitis, and rarely hyponatremia. Therefore, we report a case of a patient with cerebral salt-wasting syndrome resulting from ELD to treat normal-pressure hydrocephalus during the rehabilitation of acute ischemic stroke.

Complete occlusion of the right middle cerebral artery associated with Mycoplasma pneumoniae pneumonia

  • Kang, Ben;Kim, Dong Hyun;Hong, Young Jin;Son, Byong Kwan;Lim, Myung Kwan;Choe, Yon Ho;Kwon, Young Se
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.3
    • /
    • pp.149-152
    • /
    • 2016
  • We report a case of a 5-year-old girl who developed left hemiparesis and left facial palsy, 6 days after the initiation of fever and respiratory symptoms due to pneumonia. Chest radiography, conducted upon admission, showed pneumonic infiltration and pleural effusion in the left lung field. Brain magnetic resonance imaging showed acute ischemic infarction in the right middle cerebral artery territory. Brain magnetic resonance angiography and transfemoral cerebral angiography revealed complete occlusion of the right middle cerebral artery. Mycoplasma pneumoniae infection was identified by a 4-fold increase in IgG antibodies to M. pneumoniae between acute and convalescent sera by enzyme-linked immunosorbent assay. Fibrinogen and D-dimer levels were elevated, while laboratory exams in order to identify other predisposing factors of pediatric stroke were all negative. This is the first reported pediatric case in English literature of a M. pneumoniae-associated cerebral infarction involving complete occlusion of the right middle cerebral artery.

Differential Effects of Minocycline on Caspase- and Calpain-dependent Cell Death After Oxidative Stress

  • Choi, Yu-Keum;Kim, Gap-Seok;Han, Byung-Hee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.67-67
    • /
    • 2003
  • Minocycline is known to protect neurons from microglia-mediated cell death in many experimental models of brain diseases including ischemic stroke, Huntingtons disease (HD), amyotrophic lateral sclerosis (ALS), traumatic brain injury, multiple sclerosis, and Parkinsons disease. When the activity of caspases was assessed using their fluorescent peptide substrates, activation of caspase-2, 3, 8, and 9 was evident within 2 8 hr following oxidative insult with 0.5 mM hydrogen peroxide in PC12 cells. Minocycline significantly attenuated activation of these caspases up to 18 hr, resulting a significant increase in the cell viability as assessed by MTT assay as well as trypan blue staining. However, cleavage of alpha-spectrin and a cdk5 activator p35, which are known to be substrates for calpain, remained unchanged in the presence of minocycline, suggesting that minocycline did not block caspase-3-independent cell death or necrosis. Moreover, co-treatment with minocycline and a calpain inhibitor calpeptin synergistically inhibited hydrogen peroxide-induced cell death. These data suggest that minocycline directly inhibited apoptosis, but not necrosis, after oxidative insult in PC12 cells.

  • PDF

Neurotrophic Actions of Ginsenoside Rbi, Peptide Growth Factors and Cytokines

  • Masahiro Sakanaka;Wen, Tong-Chun;Kohji Sato;Zhang, Bo
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.21-30
    • /
    • 1998
  • Ginseng root has been considered to prevent neuronal degeneration associated with brain ischemia, but experimental proof in support of this speculation is limited. Moreover, few studies have compared the neuroprotective actions of ginseng ingredients with those of peptide growth factors and cytokines isf vivo. Using a gerbil forebrain ischemia model, we demonstrated that the oral administration of red ginseng powder before an ischemic insult prevents delayed neuronal death in the hippocampal CAI field and that a neuroprotective molecule within red ginseng powder is ginsenoside Rbl. The neurotrophic effect of ginsenoside Rbl, when examined in the gerbil ischemia model and in neuronal cultures was as potent as or more potent than the effects of epidermal growth factor, ciliary neurotrophic factor, erythropoietin, prosaposin, interleukin-6 and interleukin-3. Besides the protection of hippocampal CAI neurons against brain ischemia/repercussion injuries, ginsenoside Rbl was shown to prevent place navigation disability, cortical infarction and secondary thalamic degeneration in stroke-prone spontaneous hypertensive rats with permanent occlusion of the unilateral middle cerebral artery distal to the striate branches. These findings may validate the empirical use of ginseng root for the treatment of cerebrovascular diseases

  • PDF

Initial Experience of ACE68 Reperfusion Catheter in Patients with Acute Ischemic Stroke Related to Internal Carotid Artery Occlusion

  • Jang, Hyoung-Gyu;Park, Jung-Soo;Lee, Jong-Myong;Kwak, Hyo-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.545-550
    • /
    • 2019
  • Objective : Penumbra ACE68 reperfusion catheter is a new large bore aspiration catheter used for reperfusion of large vessel occlusion. The objective of this study was to investigate the efficacy of this catheter in comparison to that of previous Penumbra catheters in patients with acute ischemic stroke related to internal carotid artery (ICA) occlusion. Methods : Data of all eligible patients who received endovascular treatment (EVT) for ICA occlusion using Penumbra aspiration catheters between January 2015 and December 2018 were retrospectively reviewed. After dividing into two groups according to use of penumbra ACE68, baseline characteristics of patients, successful recanalization rate, puncture to recanalization time, and switch to stent base technique rate were assessed. Successful recanalization was defined by a thrombolysis in cerebral infarction (TICI) score ${\geq}2b$ and favorable functional outcome was defined according to modified Rankin scale (score, 0-2). Results : ACE68 reperfusion catheter was used in 29 of 75 eligible patients (39%). The puncture to recanalization time was significantly shorter ($26{\pm}18.2$ minutes vs. $40{\pm}24.9$ minutes, p=0.011) and the rate of switch to stent-based retrieval was significantly lower (3% vs. 20%, p=0.046) in ACE68 catheter group. Moreover, although not statistically significant, the successful recanalization rate was higher (83% vs. 76%, p=0.492) in ACE68 catheter group. Favorable functional outcome was observed in 48% of patients treated with ACE68 reperfusion catheter and in 30% of patients treated using other Penumbra systems (p=0.120). Baseline Alberta Stroke Program Early CT Scores ${\geq}8$ (odds ratio [OR], 9.74; 95% confidence interval [CI], 1.72-54.99; p=0.010) and successful recanalization (OR, 10.20; 95% CI, 1.13-92.46; p=0.039) were independent predictors of favorable outcome. Conclusion : EVT using ACE68 reperfusion catheter can be considered a first-line therapy in patients with acute ICA occlusion as it can achieve rapid recanalization and reduce the frequency of conversion to stent-retrieve therapy.

Anti-apoptotic and Neuroprotective Effects of Acupuncture at $LR_3$ on Focal Brain Ischemic Injury Induced by Intraluminal Filament Insertion in Rats (다종(多種)의 태충(太衝)($LR_3$) 침척요법(鍼刺療法)이 Intraluminal Filament 삽입술로 유발된 백서(白鼠)의 허혈성 국소 뇌손상에 미치는 영향)

  • Yim, Hyun-Jin;Cho, Myung-Rae;Youn, Dae-Hwan;Na, Chang-Su;Ryu, Chung-Ryeol
    • Journal of Acupuncture Research
    • /
    • v.24 no.2
    • /
    • pp.125-140
    • /
    • 2007
  • Objectives: This study was performed to investigate the effects of acupuncture therapy(AT, AT-9), electro-acupuncture therapy(EAT) and low level laser acupuncture therapy(LAT) at LRJ on the focal ischemia-induced by intraluminal filament insertion in rats. Methods : In the present syudy, the focal ischemia was induced by Intraluminal filament insertion into left middle cerebral artery. The subjects were divided into five groups after focal brain ischemia. (n=15, in each group) : Control with no treatment, AT with acupuncture at $LR_3$, AT-9 with acupuncture at $LR_3$ and rotating 9 times in a clockwise direction, EAT with electro-acupuncture at $LR_3$ and LAT with invasive laser acupuncture at $LR_3$. Anti-apoptotic and neuroprotective effects of acupuncture were observed by mGluR5 mRNA, Bax mRNA, Bcl-2 mRNA, Cytochrome C protein, Cresyl violet-stain and Choline acetyltransferase (ChAT)-stain in the hippocampus. Results: 1. In LAT, mGluR5, Cresyl violet-stain and ChAT-stain were increased. 2. In LAT, Cytochrome C protein was decreased. 3. In AT-9, Bax, Cytochrome C protein and the Bax/Bcl-2 ratio were decreased. 4. In AT-9, Bcl-2, Cresyl violet-stain and ChAT-stain were increased. 5. In EAT, Bcl-2 and Cresyl violet-stain were increased. Conclusions: These results suggests that LAT and AT-9 show anti-apoptotic and neuro-protective effects and that LAT and AT-9 may be useful for managing stroke by focal brain ischemia.

  • PDF

Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus

  • Shin, Myoung Cheol;Lee, Tae-Kyeong;Lee, Jae-Chul;Kim, Hyung Il;Park, Chan Woo;Cho, Jun Hwi;Kim, Dae Won;Ahn, Ji Hyeon;Won, Moo-Ho;Lee, Choong-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

The Effect of Treadmill Exercise on Ischemic Neuronal Injury in the Stroke Animal Model: Potentiation of Cerebral Vascular Integrity (중풍 동물 모델에서의 트레드밀 운동이 허혈성 신경손상에 미치는 효과: 뇌혈관 통합성 강화)

  • Kang, Kyoung-Ah;Seong, Ho-Hyun;Jin, Han-Byeol;Park, Jong-Min;Lee, Jong-Min;Jeon, Jae-Yong;Kim, Youn-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.2
    • /
    • pp.197-203
    • /
    • 2011
  • Purpose: This study was done to identify whether pre-conditioning exercise has neuroprotective effects against cerebral ischemia, through enhance brain microvascular integrity. Methods: Adult male Sprague-Dawley rats were randomly divided into four groups: 1) Normal (n=10); 2) Exercise (n=10); 3) Middle cerebral artery occlusion (MCAo), n=10); 4) Exercise+MCAo (n= 10). Both exercise groups ran on a treadmill at a speed of 15 m/min, 30 min/day for 4 weeks, then, MCAo was performed for 90 min. Brain infarction was measured by Nissl staining. Examination of the remaining neuronal cell after MCAo, and microvascular protein expression on the motor cortex, showed the expression of Neuronal Nuclei (NeuN), Vascular endothelial growth factor (VEGF) & laminin. Results: After 48 hr of MCAo, the infarct volume was significantly reduced in the Ex+MCAo group ($15.6{\pm}2.7%$) compared to the MCAo group ($44.9{\pm}3.8%$) (p<.05), and many neuronal cells were detected in the Ex+ MCAo group ($70.8{\pm}3.9%$) compared to the MCAo group ($43.4{\pm}5.1%$) (p<.05). The immunoreactivity of laminin, as a marker of microvessels and Vascular endothelial growth factor (VEGF) were intensively increased in the Ex+MCAo group compared to the MCAo group. Conclusion: These findings suggest that the neuroprotective effects of exercise pre-conditioning reduce ischemic brain injury through strengthening the microvascular integrity after cerebral ischemia.

Cilostazol Promotes the Migration of Brain Microvascular Endothelial Cells (Cilostazol에 의한 뇌혈관내피세포의 세포이동 증진 효과연구)

  • Lee, Sae-Won;Park, Jung Hwa;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1367-1375
    • /
    • 2016
  • Cilostazol is known to be a selective inhibitor of phosphodiesterase III and is generally used to treat stroke. Our previous findings showed that cilostazol enhanced capillary density through angiogenesis after focal cerebral ischemia. Angiogenesis is an important physiological process for promoting revascularization to overcome tissue ischemia. It is a multistep process consisting of endothelial cell proliferation, migration, and tubular structure formation. Here, we examined the modulatory effect of cilostazol at each step of the angiogenic mechanism by using human brain microvascular endothelial cells (HBMECs). We found that cilostazol increased the migration of HBMECs in a dose-dependent manner. However, it did not enhance HBMEC proliferation and capillary-like tube formation. We used a cDNA microarray to analyze the mechanisms of cilostazol in cell migration. We picked five candidate genes that were potentially related to cell migration, and we confirmed the gene expression levels by real-time PCR. The genes phosphoserine aminotransferase 1 (PSAT1) and CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$) were up-regulated. The genes tissue factor pathway inhibitor 2 (TFPI2), retinoic acid receptor responder 1 (RARRES1), and RARRES3 were down-regulated. Our observations suggest that cilostazol can promote angiogenesis by promoting endothelial migration. Understanding the cilostazol-modulated regulatory mechanisms in brain endothelial cells may help stimulate blood vessel formation for the treatment of ischemic diseases.