• Title/Summary/Keyword: brain imaging magnetoencephalography (MEG) data

Search Result 3, Processing Time 0.015 seconds

Statistical analysis issues for neuroimaging MEG data (뇌영상 MEG 데이터에 대한 통계적 분석 문제)

  • Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.161-175
    • /
    • 2022
  • Oscillatory magnetic fields produced in the brain due to neuronal activity can be measured by the sensor. Magnetoencephalography (MEG) is a non-invasive technique to record such neuronal activity due to excellent temporal and fair amount of spatial resolution, which gives information about the brain's functional activity. Potential utilization of high spatial resolution in MEG is likely to provide information related to in-depth brain functioning and underlying factors responsible for changes in neuronal waves in some diseases under resting state or task state. This review is a comprehensive report to introduce statistical models from MEG data including graphical network modelling. It is also meaningful to note that statisticians should play an important role in the brain science field.

Magnetoencephalography in pediatric epilepsy

  • Kim, Hunmin;Chung, Chun Kee;Hwang, Hee
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.10
    • /
    • pp.431-438
    • /
    • 2013
  • Magnetoencephalography (MEG) records the magnetic field generated by electrical activity of cortical neurons. The signal is not distorted or attenuated, and it is contactless recording that can be performed comfortably even for longer than an hour. It has excellent and decent temporal resolution, especially when it is combined with the patient's own brain magnetic resonance imaging (magnetic source imaging). Data of MEG and electroencephalography are not mutually exclusive and it is recorded simultaneously and interpreted together. MEG has been shown to be useful in detecting the irritative zone in both lesional and nonlesional epilepsy surgery. It has provided valuable and additive information regarding the lesion that should be resected in epilepsy surgery. Better outcomes in epilepsy surgery were related to the localization of the irritative zone with MEG. The value of MEG in epilepsy surgery is recruiting more patients to epilepsy surgery and providing critical information for surgical planning. MEG cortical mapping is helpful in younger pediatric patients, especially when the epileptogenic zone is close to the eloquent cortex. MEG is also used in both basic and clinical research of epilepsy other than surgery. MEG is a valuable diagnostic modality for diagnosis and treatment, as well as research in epilepsy.

Comparisons of functional brain mappings in sensory and affective aspects following taste stimulation (미각자극에 따른 감각 및 감성적 미각정보 처리과정의 기능적 매핑 비교)

  • Lee, Kyung Hee
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.585-592
    • /
    • 2012
  • Food is crucial for the nutrition and survival of humans. Taste system is one of the fundamental senses. Taste cells detect and respond to five basic taste modalities (sweet, bitter, salty, sour, and umami). However, the cortical processing of taste sensation is much less understood. Recently, there were many efforts to observe the brain activation in response to taste stimulation using functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and optical imaging. These different techniques do not provide directly comparable data each other, but the complementary investigations with those techniques allowed the description and understanding of the sequence of events with the dynamics of the spatiotemporal pattern of activation in the brain in response to taste stimulation. The purpose of this study is the understanding of the brain activities to taste stimuli in sensory and affective aspects and the reviewing of the recent research of the gustotopic map by functional brain mapping.

  • PDF