• Title/Summary/Keyword: brain imaging

Search Result 1,277, Processing Time 0.037 seconds

Brain Areas Subserving Torrance Tests of Creative Thinking: An Functional Magnetic Resonance Imaging Study

  • Hahm, Jarang;Kim, Kwang Ki;Park, Sun-Hyung;Lee, Hyo-Mi
    • Dementia and Neurocognitive Disorders
    • /
    • v.16 no.2
    • /
    • pp.48-53
    • /
    • 2017
  • Background and Purpose Torrance Tests of Creative Thinking (TTCT) is a well-known and commonly used measure of creativity. However, the TTCT-induced creative hemodynamic brain activity is rarely revealed. The purpose of this study is to elucidate the neural correlates of creative thinking in the setting of a modified version of the figural TTCT adapted for an functional magnetic resonance imaging (fMRI) experiment. Methods We designed a blocked fMRI experiment. Twenty-five participants (11 males, 14 females, mean age $19.9{\pm}1.8$) were asked to complete the partially presented line drawing of the figural TTCT (creative drawing imagery; creative). As a control condition, subjects were asked to keep tracking the line on the screen (line tracking; control). Results Compared to the control condition, creative condition revealed greater activation in the distributed and bilateral brain regions including the left anterior cingulate, bilateral frontal, parietal, temporal and occipital regions as shown in the previous creativity studies. Conclusions The present revealed the neural basis underlying the figural TTCT using fMRI, providing an evidence of brain areas encompassing the figural TTCT. Considering the significance of a creativity test for dementia patients, the neural correlates of TTCT elucidated by this study may be valuable to evaluate the brain function of patients in the clinical field.

MR imaging of cortical activation by painful peripheral stimulation in rats (쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상)

  • Lee, Bae-Hwan;Cha, Myeoung-Hoon;Cheong, Chae-Joon;Lee, Kyu-Hong;Lee, Chul-Hyun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

Pain, Acupuncture and Brain Imaging (통증, 침술 및 뇌영상)

  • Kwak, Yong-Ho;Won, Ran;Lee, Hye-Jung;Lee, Bae-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.551-558
    • /
    • 2010
  • Pain is very complex and multi-level experience that should be objective or subjective. Acupuncture is a traditional method to heal the pain and have been based on meridian theory. There have been many clinical evidences showing the pain-relieving effect of acupuncture but science-based understanding of it was poor. Furthermore in daily life, we feel huge gap between the source of pain and pain control by acupuncture stimulation. However, the underlying connection between pain control and acupuncture stimulation has been reported in many recent reports. In this paper, we briefly introduce the brain imaging techniques (functional magnetic resonance images, positron emission tomography, electroencephalograph, and magnetoencephalography) and review researches in pain and acupuncture. Through this, the brain areas that activated by pain and acupuncture will be verified, and compared each other regarding their specificity and similarity. In addition, detailed understanding of brain function which is related to pain and acupuncture analgesia through brain imaging techniques will be discussed.

  • PDF

Targeting Orthotopic Glioma in Mice with Genetically Engineered Salmonella typhimurium

  • Wen, Min;Jung, Shin;Moon, Kyung-Sub;Jiang, Shen Nan;Li, Song-Yuan;Min, Jung-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.3
    • /
    • pp.131-135
    • /
    • 2014
  • Objective : With the growing interests of bacteria as a targeting vector for cancer treatment, diverse genetically engineered Salmonella has been reported to be capable of targeting primary or metastatic tumor regions after intravenous injection into mouse tumor models. The purpose of this study was to investigate the capability of the genetically engineered Salmonella typhimurium (S. typhimurium) to access the glioma xenograft, which was monitored in mouse brain tumor models using optical bioluminescence imaging technique. Methods : U87 malignant glioma cells (U87-MG) stably transfected with firefly luciferase (Fluc) were implanted into BALB/cAnN nude mice by stereotactic injection into the striatum. After tumor formation, attenuated S. typhimurium expressing bacterial luciferase (Lux) was injected into the tail vein. Bioluminescence signals from transfected cells or bacteria were monitored using a cooled charge-coupled device camera to identify the tumor location or to trace the bacterial migration. Immunofluorescence staining was also performed in frozen sections of mouse glioma xenograft. Results : The injected S. typhimurium exclusively localized in the glioma xenograft region of U87-MG-bearing mouse. Immunofluorescence staining also demonstrated the accumulation of S. typhimurium in the brain tumors. Conclusion : The present study demonstrated that S. typhimurium can target glioma xenograft, and may provide a potentially therapeutic probe for glioma.

MR Imaging and Histological Findings of Experimental Cerebral Fat Embolism in Cats

  • Park Byung-Rae;Ko Seong-Jin;Kim Hwa-Gon
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.285-291
    • /
    • 2004
  • To determine the magnetic resonance (MR) imaging findings and natural history of cerebral fat embolism in a cat model, and to correlate the MR imaging and histologic fmdings. Intemel carotid artery of 11 cats was injected with 0.1 ml of triolein. T2-weighted, T1-weighted and Gd-enhanced T1-weighted images were obtained serially for 2 hours, 1 days, 4 days, 1 week, 2 weeks and 3 weeks after embolization. Any abnormal signal intensity was evaluated. After MR imaging at 3 weeks, brain tissue was obtained for light microscopic (LM) examination using hematoxylin-eosin (HE) and Luxol fast blue staining, and for electron microscopic examination. The LM examination with HE staining revealed normal histological findings in the greater part of an embolized lesion. Cystic change was observed in the gray matter of 8 cats, while in the gray and white matter of 3 cats. At LM examination, Luxol fast blue, staining demonstrated demyelination around the cystic change occurring in the white matter, and EM examination of the embolized cortex revealed sporadic intracapillary fat vacuoles (n=11) and disruption of the blood-brain barrier (n=4). Most lesions were normal, however, and perivascular interstitial edema and cellular swelling were mild compared with the control side. The greater part of an embolized lesion showed reversible findings at MR and histological examination. Irreversible focal necrosis was, however, observed in gray and white matter at weeks 3.

  • PDF

Cerebral Infarction Model in Rat on Magnetic Resonance Imaging (흰 쥐의 뇌경색 병변에 대한 자기공명영상)

  • Jung, Ji-Sung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.55-58
    • /
    • 2011
  • It is important to study using experimental animals for research about stroke. Magnetic Resonance Imaging(MRI) is avaluable diagnosticmethods for stroke diagnosis. The purpose of this research is to know the Magnetic Resonance Imaging(MRI) and histopathological characteristics findings after induction of photothrombotic cerebral infarction in rat brain. Male Sprague-Dawley rats were anesthetized, Rose Bengal dye(20 mg/kg) was intravenously injected. The right sensonrimotor cortex of rat brain was exposed to cold light of 7 mm diameter at a position of 1 mm anterior and 3.5 mm lateral to bregma for 20 min. The post-infarction effects were monitored by T1 weighted and T2 weighted images of brain MRI. Histopathological changes were observed after Hematoxylin & Eosin staining. The lesion appeared clearly high signal intensity area on T2 weighted images(the major axis $7.04{\pm}0.11$ mm, the minor axis $3.08{\pm}0.04$ mm) and also H&E staining was same result. In conclusion, MRI was avaluable diagnostic methods for diagnosis and serial changes of stroke.

  • PDF

Body Height Effect on Brain Volumes in Youth Decreases in Old Age in Koreans

  • Koh, In-Song
    • Interdisciplinary Bio Central
    • /
    • v.3 no.3
    • /
    • pp.11.1-11.5
    • /
    • 2011
  • The MRI (magnetic resonance imaging) volumetric analysis of the brain was performed in 59 healthy elderly Koreans (aged 62-76 years; 34 male, 25 female) to investigate whether the previously reported significant correlations between body height and brain volumes in the young aged Koreans (20's) still exist in the old aged Koreans (60's and 70's). Unlike previously reported significant correlations in the young aged Koreans, neither the correlation between whole brain volume and body height in male nor the correlation between cerebellar volume and body height in female show any significance in the old aged Koreans. The significant correlation between body height and whole brain volume was still observed when both male and female data were combined (r=0.27, P<0.05), but the correlation coef-ficient and the level of significance markedly decreased from those of previously reported Korean youth data (r=0.67, P<0.01). Simple linear regression analysis shows decrease of explanatory power of height (measured in $r^2$) from 44% in the youth group to 7% in the old age group on the variance of whole brain volume. Multiple linear regression analysis shows that age and sex, rather than height, are major explanatory variables for whole brain volume in the old aged Koreans. The loss of correlations in the aged group is suspected to be mainly due to age related brain volume changes.

Correlation Between Unidentified Bright Objects on Brain Magnetic Resonance Imaging (MRI) and Cerebral Glucose Metabolism in Patients with Neurofibromatosis Type 1

  • Sohn, Young Bae;An, Young Sil;Lee, Su Jin;Choi, Jin Wook;Jeong, Seon-Yong;Kim, Hyon-Ju;Ko, Jung Min
    • Journal of Genetic Medicine
    • /
    • v.9 no.2
    • /
    • pp.84-88
    • /
    • 2012
  • Purpose: Neurofibromatosis type 1 (NF1), which is caused by mutations of the NF1 gene, is the most frequent single gene disorder to affect the nervous system. Unidentified bright objects (UBOs) are commonly observed on brain magnetic resonance imaging (MRI) in patients with NF1. However, their clinical and pathologic significance is not well understood. The purpose of this study was to investigate the correlation between UBOs and cerebral glucose metabolism measured by $^{18}F$-2-Fluoro-2-deoxy-D-glucose ($^{18}F$-FDG) positron emission tomography (PET) in Korean patients with NF1. Materials and Methods: Medical records of 75 patients (34 males and 41 females) with NF1 who underwent brain MRI and PET between 2005 and 2011 were evaluated retrospectively. Clinical data including demographics, neurological symptoms, and brain MRI and PET findings, were reviewed. Results: UBOs were detected in the brain MRI scans of 31 patients (41%). The region most frequently affected by UBOs was the basal ganglia. The most frequent brain PET finding was thalamic glucose hypometabolism (45/75, 60%). Of the 31 patients with UBOs, 26 had thalamic glucose hypometabolism on brain PET, but the other 5 had normal brain PET findings. Conversely, of the 45 patients with thalamic glucose hypometabolism on brain PET, 26 showed UBOs on their brain MRI scans, but 19 had normal findings on brain MRI scans. Conclusion: UBOs on brain MRI scans and thalamic glucose hypometabolism on PET appear to be 2 distinctive features of NF1 rather than correlated symptoms. Because the clinical significance of these abnormal imaging findings remains unclear, a longitudinal follow-up study of changes in clinical manifestations and imaging findings is necessary.

New Trend of Pain Evaluation by Brain Imaging Devices (뇌기능 영상장치를 이용한 통증의 평가)

  • Lee Sung-Jin;Bai Sun-Joon
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.365-374
    • /
    • 2005
  • Pain has at least two dimensions such as somatosensory qualities and affect and patients are frequently asked to score the intensity of their pain on a numerical pain rating scale. However, the use of a undimensional scale is questionable in view of the belief, overwhelmingly supported by clinical experience as well as by empirical evidence from multidimensional scaling and other sources, that pain has multidimensions such as sensory-discrimitive, motivational-affective and cognitive-evaluative The study of pain has recently received much attention, especially in understanding its neurophysiology by using new brain imaging techniques, such as positron emission tomography(PET) and functional magnetic resonance imaging (fMRI), both of which allow us to visualize brain function in vivo. Also the new brainimaging devices allow us to evaluate the patients pain status and plan To treat patients objectively. Base4 on our findings we presented what are the new brain imaging devices and the results of study by using brain imaging devices.

  • PDF

Lack of Myelination in the Anterior Limbs of the Internal Capsule Associated with Cri-du-Chat Syndrome: Case Report

  • Lee, Hyo Jin;You, Sun Kyoung;Lee, So Mi;Cho, Hyun-Hae
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.114-116
    • /
    • 2015
  • A 21-month-old girl with cri-du-chat syndrome in conjunction with developmental delay underwent brain magnetic resonance imaging (MRI). The MRI showed hypoplasia of the brain stem, a normal cerebellum, thinning of the corpus callosum, and a lack of myelination in both anterior limbs of the internal capsule. She also had neonatal bilateral subependymal cysts. We believe that the symmetrical lack of myelination in both anterior limbs of the internal capsule could be a diagnostic clue of cri-du-chat syndrome.