• Title/Summary/Keyword: brain imaging

Search Result 1,375, Processing Time 0.029 seconds

MAGNETIC RESONANCE IMAGING APPEARANCE OF EPIDURAL HEMATOMA IN DOG (개의 경막외 혈종의 자기공명영상학적 진단)

  • Choi, Chi-Bong;Kim, Hwi-Yool;Kim, Su-Gwan;Bae, Chun-Sik
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.5
    • /
    • pp.488-491
    • /
    • 2005
  • A 3-year-old female, 5kg, Shih-tzu developed an acute onset of depression, disorientation, hypersalivation, nystagmus after falling down 2 meter height place. In plain skull radiography, there was fracture line in the frontal and parietal bones and next day magnetic resonance imaging examination was performed. Magnetic resonance imaging of the brain was performed with 3.0 Tesla unit. Under general anesthesia, the dog was placed in prone with its head positioned in a birdcage coil. Transverse, sagittal and coronal fast spin echo images of the brain were obtained with the following pulse sequences: T1 weighted images (TR = 560 ms and TE = 18.6 ms) and T2 weighted images (TR = 3500 ms and TE = 80 ms). Magnetic resonance imaging showed epidural hematoma in the left frontal area resulting in compression of the adjacent brain parenchyma. Left lateral ventricle was compressed secondarily and the longitudinal fissure shifted to the right, representing mass effect. The lesion was iso-to slightly hyperintense on T1 weighted image and iso-slightly hypointense signal on T2 weighted image. At necropsy, there was a skull fracture and epidural hematoma in the left frontal area. Magnetic resonance imaging of epidural hematoma is reviewed.

[ ${\beta}-Amyloid$ ] Imaging Probes (베타아밀로이드 영상용 프로브)

  • Jeong, Jae-Min
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • Imaging distribution of ${\beta}-amyloid$ plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the ${\beta}-amyloid$ plaques includes using radiolabeled peptides which can be only applied for peripheral ${\beta}-amyloid$ plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging ${\beta}-amyloid$ plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for ${\beta}-amyloid$ imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for ${\beta}-amyloid$ imaging agent.

Prevalence of Pathological Brain Lesions in Girls with Central Precocious Puberty: Possible Overestimation?

  • Yoon, Jong Seo;So, Cheol Hwan;Lee, Hae Sang;Lim, Jung Sub;Hwang, Jin Soon
    • Journal of Korean Medical Science
    • /
    • v.33 no.51
    • /
    • pp.329.1-329.9
    • /
    • 2018
  • Background: Brain magnetic resonance imaging (MRI) is routinely performed to identify brain lesions in girls with central precocious puberty (CPP). We aimed to investigate the prevalence and type of brain lesions among Korean girls with CPP and evaluate the need for routine brain MRI examinations. Methods: This retrospective cross-sectional study evaluated data on 3,528 girls diagnosed with CPP from April 2003 to December 2016, and identified 317 girls who underwent sellar MRI. Exclusion criteria were patients with a known brain tumor or who did not undergo brain MRI due to refusal or the decision of the pediatric endocrinologist. Results: Normal sellar MRI findings were observed in 291 of the 317 girls (91.8%). Incidental findings were observed in 26 girls (8.2%). None of the patients had pathological brain lesions. Conclusion: The prevalence of intracranial lesions among girls who were generally healthy and without neurological symptoms but diagnosed with CPP was lower than that previously reported. Furthermore, none of the identified lesions required treatment. It may be prudent to reconsider the routine use of brain MRI to screen all patients with CPP, especially if they are healthy and neurologically asymptomatic, and are girls aged 6-8 years.

A Comparison Study of Magnetic Resonance Imaging Findings and Neurological Signs in Canine Brain Diseases

  • Kim, Min-Ju;Song, Joong-Hyun;Hwang, Tae-Sung;Lee, Hee-Chun;Yu, Do-Hyeon;Kang, Byeong-Teck;Jung, Dong-In
    • Journal of Veterinary Clinics
    • /
    • v.35 no.5
    • /
    • pp.178-183
    • /
    • 2018
  • The object of this study was to compare magnetic resonance imaging (MRI) findings and neurological signs in canine brain diseases. Brain diseases can cause severe neurological deficits and may be life-threatening. The antemortem diagnosis of the brain diseases is difficult for the clinician, since definitive diagnosis is based upon histopathological confirmation. Brain diseases are often associated with specific clinical signs, signalment, progression, and location. Accurate lesion localization through neurological examination and MRI findings is helpful for developing a differential diagnosis. A retrospective study was performed to compare the neurological examination of dogs with suspected brain disease to the MRI findings. Based on this study, neurological examination is a reliable way to localize most brain lesions. Postural reaction deficits do not provide sufficient information to localize lesions. Additionally, not all brain lesions present clinical signs and inflammatory lesions may cause no detectable abnormalities on MRI. Therefore, in clinical practice, a combination of neurological examination and MRI findings recommended for accurate brain lesion localization.

Comparative Study of Functional Magnetic Resonance Imaging by Global Scaling Analysis (Global Scaling 분석방법에 따른 기능적 자기공명영상의 비교 연구)

  • Yoo, Dong-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • Purpose : To evaluate the effect of global scaling analysis on brain activation for sensory and motor functional MR imaging study. Materials and methods : Four normal subjects without abnormal neurological history were included. Arm extension-flexion movement was used for motor function and 1KHz pure tone stimulation was used for auditory function. Functional magnetic resonance imaging was performed at 3T MRI (GE, Milwaukee, USA) using BOLD-EPI technique and SPM2 was employed for data analysis. On data analysis, the brain activation images were obtained with and without global scaling by fixing other parameters such as motion correction and realignment. Results : The difference in brain activation between no scaling and global scaling was not large in case of right upper extremity movement (p<0.000001). For auditory test, brain activation with global scaling showed larger activation than that of without global scaling (p<0.05). Conclusion : A caution must be taken into account when analyzing functional imaging data with global scaling especially for functional study of small local BOLD signal change.

  • PDF

Brain Magnetic Resolution Imaging to Diagnose Bing-Neel Syndrome

  • Kim, Ho-Jung;Suh, Sang-Il;Kim, Joo-Han;Kim, Byung-Jo
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.6
    • /
    • pp.588-591
    • /
    • 2009
  • Radiologic findings of Bing-Neel syndrome, which is an extremely uncommon complication resulting from malignant lymphocyte infiltration into the central nervous system (CNS) in patients with Waldenstr$\ddot{o}$m's macroglobulinemia (WM), have been infrequently reported due to extreme rarity of the case. A 75-year-old man with WM presented at a neurology clinic with progressive gait and memory disturbances, and dysarthria of 2 months duration. Cerebrospinal fluid and serum protein electrophoresis and immunofixation electrophoresis showed IgM kappa-type monoclonal gammopathy. Brain magnetic resonance imaging revealed multifocal, hyperintense lesions on T2 weighted-images. Brain diffusion-weighted imaging (DWI) demonstrated hyperintensities in cerebral and cerebellar lesions that appeared isointense on apparent diffusion coefficient maps, which were compatible with vasogenic edema. Although histologic analysis is a confirmative study to prove direct cell infiltration into the brain, brain MRI with DWI may be a good supportive study to diagnose Bing-Neel syndrome.

Correlation of CT Perfusion Images with VEGF Expression in Solitary Brain Metastases

  • Zhang, Jian-Hua;Wang, Ming-Sheng;Pan, Hai-Hong;Li, Shu-Feng;Wang, Zhong-Qiu;Chen, Wang-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1575-1578
    • /
    • 2012
  • Objectives: To obtain permeability surface (PS) values using multi-slice helical CT perfusion imaging and to evaluate the spatial distribution correlation between PS values and vascular endothelial growth factor (VEGF) expression in solitary brain metastases. Methods: Imaging was performed on 21 patients, PS values being calculated from the central, border and peripheral parts of tumours. VEGF expression was determined by immunohistochemical staining. Results: Rim enhancement was found in 16 cases, the border of the tumour featuring PS elevation with high VEGF expression in 13 cases. In the 5 cases with nodular enhancement, the border and the central part had high permeability and VEGF expression was high in all cases, the correlation being significant (P<0.01). Conclusion: VEGF expression in brain metastases positively correlates with PS values from CT perfusion imaging, so that the latter can be used in the surveillance of angiogenic activity in brain metastases.

Accuracy of image registration for radiation treatment planning using a brain phantom

  • Jin, Ho-Sang;Suh, Tae-Suk;Song, Ju-Young;Juh, Ra-Hyeong;Kwark, Chul-Eun;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.106-106
    • /
    • 2002
  • Purpose: The purposes of our study are (1) to develop a brain phantom which can be used for multimodal image registration, (2) to evaluate the accuracy of image registration with the home-made phantom. Method: A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using chamfer matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods for CT, MR imaging and Pb rods for SPECT imaging. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process.

  • PDF

Brain Areas Subserving Torrance Tests of Creative Thinking: An Functional Magnetic Resonance Imaging Study

  • Hahm, Jarang;Kim, Kwang Ki;Park, Sun-Hyung;Lee, Hyo-Mi
    • Dementia and Neurocognitive Disorders
    • /
    • v.16 no.2
    • /
    • pp.48-53
    • /
    • 2017
  • Background and Purpose Torrance Tests of Creative Thinking (TTCT) is a well-known and commonly used measure of creativity. However, the TTCT-induced creative hemodynamic brain activity is rarely revealed. The purpose of this study is to elucidate the neural correlates of creative thinking in the setting of a modified version of the figural TTCT adapted for an functional magnetic resonance imaging (fMRI) experiment. Methods We designed a blocked fMRI experiment. Twenty-five participants (11 males, 14 females, mean age $19.9{\pm}1.8$) were asked to complete the partially presented line drawing of the figural TTCT (creative drawing imagery; creative). As a control condition, subjects were asked to keep tracking the line on the screen (line tracking; control). Results Compared to the control condition, creative condition revealed greater activation in the distributed and bilateral brain regions including the left anterior cingulate, bilateral frontal, parietal, temporal and occipital regions as shown in the previous creativity studies. Conclusions The present revealed the neural basis underlying the figural TTCT using fMRI, providing an evidence of brain areas encompassing the figural TTCT. Considering the significance of a creativity test for dementia patients, the neural correlates of TTCT elucidated by this study may be valuable to evaluate the brain function of patients in the clinical field.

MR imaging of cortical activation by painful peripheral stimulation in rats (쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상)

  • Lee, Bae-Hwan;Cha, Myeoung-Hoon;Cheong, Chae-Joon;Lee, Kyu-Hong;Lee, Chul-Hyun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF