• 제목/요약/키워드: brain imaging

검색결과 1,393건 처리시간 0.022초

Brain Mapping Using Neuroimaging

  • Tae, Woo-Suk;Kang, Shin-Hyuk;Ham, Byung-Joo;Kim, Byung-Jo;Pyun, Sung-Bom
    • Applied Microscopy
    • /
    • 제46권4호
    • /
    • pp.179-183
    • /
    • 2016
  • Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and independent component analysis for fMRI also will also be introduced.

Postcontrast T1-weighted Brain MR Imaging in Children: Comparison of Fat-suppressed Imaging with Conventional or Magnetization Transfer Imaging

  • 이충욱;구현우;최충곤
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.37-37
    • /
    • 2003
  • To assess the merits and demerits of postcontrast fat-suppressed (FS) brain MR imaging in children in the evaluation of various enhancing lesions, compared with postcontrast conventional or Magnetization Transfer (MT) imaging. 대상 및 방법: We reviewed patients with enhancing lesion on brain MR imaging who underwent both FS imaging and one of conventional or MT imaging as a postcontrast T1-weighted brain MR imaging. Inclusion criteria of our study were as follows: MR studies should be peformed within one-year interval and showed no significant interval change of imaging findings. Thirty-four patients (21 male, 13 female; mean age, 8 years) with 43 enhancing lesions (19 intra-axial, 19 extra-axial, and 5 orbital location) were included in this study, Twenty-one pairs of FS and conventional imaging, and 15 pairs of FS and MT imaging were available. Two radiologists visually assessed the lesion conspicuity and the presence of flow or susceptibility artifacts in a total of 36 pairs of MR imaging by consensus. For 21 measurable lesions (19 pairs of FS and conventional imaging, 5 pairs of FS and MR imaging), contrast ratio between the lesion and the normal brain( [SIlesion-SIwater]/[SInormal brain-SIwater]) were calculated and compared.

  • PDF

뇌전이암 진단을 위한 제한적 뇌 자기공명영상의 유용성에 관한 연구 (Detection of Brain Metastatses Using Limited Brain MR Imaging : Usefulness of Limited Contrast-Enhanced MR Imaging in Brain Metastasis)

  • 권선중;이연선;안진영;박희선;정성수;김주옥;김진환;송창준;김선영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제55권5호
    • /
    • pp.499-505
    • /
    • 2003
  • 연구배경 : 본 논문에서는 뇌 전이 병소의 발견에 있어서 고식적 조영증강 자기공명영상 기법과 비교하여 제한적 조영증강 자기공명영상의 유용성을 알아보고자 하였다. 방 법 : 1998년 4월부터 2002년 9월까지 뇌 전이의 여부를 알아보기 위해 고식적 뇌 자기공명영상올 시행한 폐암 및 기타 암으로 진단을 받은 47명의 환자를 대상으로 하였다. 47명의 환자에서 축상면 T1 강조영상, 축상면 조영증강 T1강조영상, 관상면 조영증강 Tl 강조영상을 포함하는 제한적 뇌 자기공명영상을 선정하여 뇌 전이 결절의 영상판독을 시도하고 이를 고식적 뇌 자기공명영상의 영상소견과 비교하여 뇌 전이 발견의 민감도, 특이도와 일치율을 알아보았다. 결 과 : 47명의 환자 중 고식적 조영증강 자기공명영상에서 43명이 뇌 전이가 있었고, 제한적 자기공명영상에서는 42명에서 뇌 전이를 발견하였다.(민감도=97.67%). 고식적 뇌 자기공명영상에서 뇌 전이가 없었던 4명의 환자는 제한적 뇌 자기공명영상에서도 모두 뇌 전이가 없었다.(특이도=100%) 제한적 뇌 자기공명영상과 고식적 뇌 자기공명영상은 Pearson correlation이 0.884(Confidence Interval: 99%)로 높은 일치율올 보였다. 결 론 : 제한적 뇌 자기공명영상은 적은 비용으로 뇌 전이 여부를 판정할 수 있는 방법으로 제한적 자기공명 영상은 고식적 자기공명영상에 비해 손색없는 진단율을 보이므로 증상이 있는 환자에서만 시행되어 왔던 뇌영상 조영을 무증상 환자에서도 뇌 전이의 여부를 알아보기 위해 시행할 수 있을 것이다.

Postcontrast Brain MR Imaging in Children: Various Pulse Sequences and Imaging Strategies

  • 이충욱;구현우
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.100-100
    • /
    • 2003
  • In brain MR imaging, contrast-enhanced study is important in the detection and characterization of lesions. As a postcontrast brain MR imaging, conventional T1 weighted imaging has been usually used. Magnetization transfer imaging has been used to increase conspicuity of enhancing lesions. In addition, fat-suppression imaging can be used as in other parts of the body. Recently, FLAIR sequence has been reported to be useful in detecting subarachnoid, meningeal, and subdural abnormalities. In this exhibit, we demonstrate basic principles and typical appearances of various pulse sequences that can be used as a postcontrast brain MR imaging in children. Furthermore, we discuss imaging strategies to increase clinical usefulness of postcontrast brain MR imaging for specific abnormalities. The advantages and disadvantages of each pulse sequence are also discussed.

  • PDF

뇌자기공명영상의 노화에 따른 변화 (A Review of Brain Magnetic Resonance Imaging Correlates of Successful Cognitive Aging)

  • 지은경;정인원;윤탁
    • 생물정신의학
    • /
    • 제21권1호
    • /
    • pp.1-13
    • /
    • 2014
  • Normal aging causes changes in the brain volume, connection, function and cognition. The brain changes with increases in age and difference of gender varies at all levels. Studies about normal brain aging using various brain magnetic resonance imaging (MRI) variables such as gray and white matter structural imaging, proton spectroscopy, apparent diffusion coefficient, diffusion tensor imaging and functional MRI are reviewed. Total volume of brain increases after birth but decreases after 9 years old. During adulthood, total volume of brain is relatively stable. After 35 years old, brain shrinks gradually. The changes of gray and white matters by aging show different features. N-acetylaspartate decreases or remains unchanged but choline, creatine and myo-inositol increase with aging. Apparent diffusion coefficient decreases till 20 years old and then becomes stable during adulthood and increase after 60 years old. Diffusion tensor properties in white matter tissue are variable during aging. Resting-state functional connectivity decreases after middle age. Structural and functional brain changes with normal aging are important for studying various psychiatric diseases such as dementia, schizophrenia and bipolar disorder. Our review may be helpful for studying longitudinal changes of these diseases and successful aging.

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • 제24권4호
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

Unusual Acute Encephalitis Involving the Thalamus: Imaging Features

  • Sam Soo Kim;Kee-Hyun Chang;Kyung Won Kim;Moon Hee Han;Sung Ho Park;Hyun Woo Nam;Kyu Ho Choi;Woo Ho Cho
    • Korean Journal of Radiology
    • /
    • 제2권2호
    • /
    • pp.68-74
    • /
    • 2001
  • Objective: To describe the brain CT and MR imaging findings of unusual acute encephalitis involving the thalamus. Materials and Methods: We retrospectively reviewed the medical records and CT and/or MR imaging findings of six patients with acute encephalitis involving the thalamus. CT (n=6) and MR imaging (n=6) were performed during the acute and/or convalescent stage of the illness. Results: Brain CT showed brain swelling (n=2), low attenuation of both thalami (n=1) or normal findings (n=3). Initial MR imaging indicated that in all patients the thalamus was involved either bilaterally (n=5) or unilaterally (n=1). Lesions were also present in the midbrain (n=5), medial temporal lobe (n=4), pons (n=3), both hippocampi (n=3) the insular cortex (n=2), medulla (n=2), lateral temporal lobe cortex (n=1), both cingulate gyri (n=1), both basal ganglia (n=1), and the left hemispheric cortex (n=1). Conclusion: These CT or MR imaging findings of acute encephalitis of unknown etiology were similar to a combination of those of Japanese encephalitis and herpes simplex encephalitis. In order to document the specific causative agents which lead to the appearance of these imaging features, further investigation is required.

  • PDF

Cerebellar maturation ratio of forebrain and brainstem at magnetic resonance imaging in the micropig

  • Yi, Kang-Jae;Kim, Jun-Young;Lee, Namsoon;Choi, Mihyun;Yoon, Jung-Hee;Choi, Min-Cheol
    • 대한수의학회지
    • /
    • 제52권2호
    • /
    • pp.83-87
    • /
    • 2012
  • The study of pigs as a human disease model has been conducted in neuroscience. But the morphological development of pig brain by using MRI is rare. The purpose of this study is to determine whether cerebellum maintains consistent proportion to other brain regions in aging. Clinically healthy sixteen micropigs, 1, 2, 4, and 8 months were studied. The micropigs were anesthetized with isoflorane. MRI was acquired using a 0.3T system. To figure out development of ratio that allowed identification of normal cerebellum size, we measured the area of the cerebellum, brainstem, and forebrain from the mid-sagittal brain images on T1W. Mid-sagittal cross-sectional area (CSA) of total brain, forebrain, brainstem, and cerebellum were expressed as absolute values and also as percentages which were compared between the four age groups of micropigs for the purpose to define the effect of age on brain morphometry. It was found that there was not a significant difference in the percentage of the brain occupied by an individual region between groups although the absolute CSA differed significantly among age groups. There was no effect of age on the ratio between the cerebellum and total brain in 4 age groups. The normal size of cerebellum changes during brain development maintained a consistent ratio to other brain regions in normal micropigs. The ratio of CSA quantified on the mid-sagittal MR images offers a suitable method to detect presence of cerebellar anomalies in micropigs.

Neuroimaging Studies of Chronic Pain

  • Kang, Do-Hyung;Son, June-Hee;Kim, Yong-Chul
    • The Korean Journal of Pain
    • /
    • 제23권3호
    • /
    • pp.159-165
    • /
    • 2010
  • The evolution of brain imaging techniques over the last decade has been remarkable. Along with such technical developments, research into chronic pain has made many advances. Given that brain imaging is a non-invasive technique with great spatial resolution, it has played an important role in finding the areas of the brain related to pain perception as well as those related to many chronic pain disorders. Therefore, in the near future, brain imaging techniques are expected to be the key to the discovery of many unknown etiologies of chronic pain disorders and to the subjective diagnoses of such disorders.

뇌종양 영상의 현재와 미래 (Current Applications and Future Perspectives of Brain Tumor Imaging)

  • 박지은;김호성
    • 대한영상의학회지
    • /
    • 제81권3호
    • /
    • pp.467-487
    • /
    • 2020
  • 뇌종양의 진단 및 치료 반응 평가의 기본이 되는 영상기법은 해부학적 영상이다. 현재 임상에서 사용 가능한 영상기법들 중 확산 강조 영상 및 관류 영상이 추가적인 정보를 제공하고 있다. 최근에는 종양의 유전체 변이와 이질성 평가가 중요해지면서 라디오믹스와 딥러닝을 이용한 영상분석기법의 임상 응용이 기대되고 있다. 본 종설에서는 뇌종양 영상 임상 적용에서 여전히 중요한 해부학적 영상을 중심으로 한 자기공명영상 촬영 권고안, 최신 영상기법 중 확산 강조 영상 및 관류 영상의 기본 원리, 병태생리학적 배경 및 임상응용, 마지막으로 최근 컴퓨터 기술의 발전으로 많이 연구되고 있는 라디오믹스와 딥러닝의 뇌종양에서의 향후 활용가치에 대해 기술하고자 한다.