• 제목/요약/키워드: bracing

검색결과 364건 처리시간 0.022초

연속 2-거더교의 여유도 평가 실험 - 수평브레이싱의 효과 (An Experiment on Redundancy in Continuous Span Two-Girder Bridge - Effects of Lateral Bracing)

  • 박용명;조움돋이;황민오;윤태양
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.417-429
    • /
    • 2008
  • 본 연구에서는 단재하경로 구조로 인식되는 연속 2-거더교에서 한 개 거더에 심각한 균열 손상의 발생 시 여유도를 평가하기 위한 실험적 연구를 수행하였다. 하부 수평브레이싱이 여유도에 미치는 영향을 평가하기 위해 실험변수는 하부 수평브레이싱으로 하고 하부 수평브레이싱을 설치한 경우와 설치하지 않은 1/5 모형 시험체 2개를 제작하였다. 그리고 각 시험체에 대해 측경간의 한 개 거더에 인위적으로 손상을 가한 후 종국상태에 이르기까지 재하 실험을 수행하였다. 실험으로부터 하부 수평브레이싱이 없는 시험체에 비해 설치된 경우가 1.2배 정도 높은 내하 성능을 갖는 것으로 나타났다. 실제 교량의 고정하중효과를 반영하기 위한 전산해석을 수행하고, 이로부터 여유도 평가를 수행한 결과, 2-거더교가 연속교 형식으로 적용되면 수평브레이싱이 없어도 적절한 여유도를 갖는 것으로 나타났으며, 수평브레이싱이 설치되면 1.8배 정도의 여유도가 향상되는 것으로 나타났다.

Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper

  • Pachideh, Ghasem;Gholhaki, Majid;Kafi, Mohammadali
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.197-211
    • /
    • 2020
  • Application of the steel ring as a type of seismic fuse has been one of the efforts made by researchers in recent years aiming to enhance the ductility of the bracing systems which in turn, possesses various advantages and disadvantages. Accordingly, to alleviate these disadvantages, an innovative bracing system with a diamond scheme equipped with a steel ring is introduced in this paper. In this system, the braces and yielding circular damper act in parallel whose main functionality is to increase ductility, energy absorption and mitigate drawbacks of the existing bracing systems, in which the braces and yielding circular damper act in parallel. To conduct the experimental tests, specimens with three types of rigid, semi-rigid and pinned connections were built and subjected to cyclic loading so that their performance could be analyzed. Promisingly, the results indicate both great applicability and efficiency of the proposed system in energy absorption and ductility. Moreover, it was concluded that as the braces and damper are in parallel, the use of a steel ring with smaller size and thickness would result in higher energy absorption and load-resisting capacity when compared to the other existing systems. Finally, to assess the potential of numerically modeling the proposed system, its finite element model was simulated by ABAQUS software and observed that there is a great agreement between the numerical and experimental results.

Design of a bracing-friction damper system for seismic retrofitting

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun;Kim, Jinkoo
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.685-696
    • /
    • 2008
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

After-fracture redundancy in simple span two-girder steel bridge

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.651-670
    • /
    • 2007
  • An experimental study to evaluate a redundancy capacity in simple span two plate-girder bridges, which are generally classified as a non-redundant load path structure, has been performed under the condition that one of the two girders is seriously damaged. The bottom lateral bracing was selected as an experimental parameter and two 1/5-scale bridge specimens with and without bottom lateral bracing have been prepared. The loading tests were first performed on the intact specimens without cracked girder within elastic range. Thereafter, the ultimate loading tests were conducted on the damaged specimens with an induced crack at the center of a girder. The test results showed that the cross beams and concrete deck redistributed partly the applied load to the uncracked girder, but the lateral bracing system played a significant role of the load redistribution when a girder was damaged. The redundancy was evaluated based on the test results and an appropriate redundancy level was evaluated when the lateral bracing was provided in a seriously damaged simple span two-girder steel bridge.

다양한 자세에 따른 복부 할로잉과 브레이싱 수축시 체간근 활성도의 차이 (Difference of Trunk Muscles Activity during Hollowing vs Bracing Contraction in Various Position)

  • 문현주;조성학;구봉오
    • 대한물리의학회지
    • /
    • 제8권1호
    • /
    • pp.11-18
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate the difference of trunk muscles activity during abdominal hollowing and bracing contraction in various position. METHODS: This pilot test was carried out in a volunteer sample of normal adults(n=24) without a history of low back pain or injury. 24 subjects were randomly allocated to three groups(n=8) as a contraction method respectively. In hooklying position, trunk muscles activity of subjects was measured using EMG in various bridging position. RESULTS: Abdominal bracing contraction made to more great trunk deep and superficial muscles activity than hollowing contraction.(p<0.00) Especially, Multifidus activity was the biggest.(p<0.00) CONCLUSION: The result from this study showed that abdominal bracing contraction made to more balancing activity of trunk muscles than abdominal hollowing contraction. Thus, It will good for trunk muscles unbalanced LBP patient to improve lumbar stabilization.

Experimental and analytical study in determining the seismic performance of the ELBRF-E and ELBRF-B braced frames

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.571-587
    • /
    • 2020
  • In this article the seismic demand and performance of two recent braced steel frames named steel moment frames with the elliptic bracing (ELBRFs) are assessed through a laboratory program and numerical analyses of FEM. Here, one of the specimens is without connecting bracket from the corner of the frame to the elliptic brace (ELBRF-E), while the other is with the connecting brackets (ELBRF-B). In both the elliptic braced moment resisting frames (ELBRFs), in addition to not having any opening space problem in the bracing systems when installed in the surrounding frames, they improve structure's behavior. The experimental test is run on ½ scale single-story single-bay ELBRF specimens under cyclic quasi-static loading and compared with X-bracing and SMRF systems in one story base model. This system is of appropriate stiffness and a high ductility, with an increased response modification factor. Moreover, its energy dissipation is high. In the ELBRF bracing systems, there exists a great interval between relative deformation at the yield point and maximum relative deformation after entering the plastic region. In other words, the distance from the first plastic hinge to the collapse of the structure is fairly large. The experimental outcomes here, are in good agreement with the theoretical predictions.

2거더 강-콘크리트 합성형 철도교의 거동에 대한 2차부재의 영향 평가 (The Effect of Secondary Members on the Behavior of Steel-Concrete Composite Two-Girder Railway Bridges)

  • 배두병;조준희
    • 한국철도학회논문집
    • /
    • 제8권1호
    • /
    • pp.41-50
    • /
    • 2005
  • Steel -Concrete Composite two girder railway bridges applying high performance steel with extra thick plate have economic and aesthetic advantages due to the simplification of manufacturing and construction process. However, steel bridges are seldom adopted in domestic railway bridge, since steel bridges are not efficient as R.C bridges considering dynamic characteristics and noise, etc. While highway bridges do not have lower horizontal bracing and larger interval of diaphragm cross beam, railway bridges install lower horizontal bracings to control the torsion due to heavy eccentrical line load. Accurate finite element analysis were performed with the parameters of existence of bracing and bracing shape, with the cross beam interval and stiffness, etc. To find out the effects of secondary members such as horizontal bracings and diaphragms, static md dynamic analysis have been performed by using finite element method. In this study, few member plate-girder bridges are analyzed with variable span lengths to examine the dynamic behavior and limits of damping. And though lateral bracings are members against torsion, but lateral bracing's absence is no big problem. Time history analysis using mode superposition method makes proof of this result.

Hysteretic behavior studies of self-centering energy dissipation bracing system

  • Xu, Longhe;Fan, Xiaowei;Lu, Dengcheng;Li, Zhongxian
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1205-1219
    • /
    • 2016
  • This paper presents a new type of pre-pressed spring self-centering energy dissipation (PS-SCED) bracing system that combines friction mechanisms between the inner and outer tube members to provide the energy dissipation with the pre-pressed combination disc springs installed on both ends of the brace to provide the self-centering capability. The mechanics and the equations governing the design and hysteretic responses of the bracing system are outlined, and a series of validation tests of components comprising the self-centering mechanism of combination disc springs, the friction energy dissipation mechanism, and a large scale PS-SCED bracing specimen were conducted due to the low cyclic reversed loadings. Experimental results demonstrate that the proposed bracing system performs as predicted by the equations governing its mechanical behaviors, which exhibits a stable and repeatable flag-shaped hysteretic response with excellent self-centering capability and appreciable energy dissipation, and large ultimate bearing and deformation capacities. Results also show that almost no residual deformation occurs when the friction force is less than the initial pre-pressed force of disc springs.

Analytical evaluation of a modular CFT bridge pier according to directivity

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper focuses on the analytical behavior of modular circular concrete-filled tubular (CFT) column with enhanced bracing details. To design a full-scale bridge pier of multiple circular concrete-filled tubes, numerical analysis was used to evaluate structural performance according to load directivity. In previous research (Ma et al. 2012, Shim et al. 2014), low cycle fatigue failure at bracing joints was observed, so enhanced bracing details to prevent premature failure are proposed in this analysis. The main purpose of this research is to investigate seismic performance for the diagonal direction load without premature failure at the joints when the structure reaches the ultimate load. The ABAQUS finite-element software is used to evaluate experimental performance. A quasi-static loading condition on a modular bridge pier is introduced to investigate structural performance. The results obtained from the analysis are evaluated by comparing with load-displacement responses from experiments. The concrete-filled tubes with enhanced bracing details showed higher energy dissipation capacity and proper performance without connection failure for a diagonal load.

방진원 고무를 이용한 가새형 감쇠기의 진동제어 실험연구 (Experimental Study on Vibration Control of Bracing Dampers using Rubbers)

  • 민경원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.249-257
    • /
    • 1998
  • Vibration-resistant rubbers, whose elastic and shear behaviors are similar to viscoelastic materials, are used to make bracing dampers to reduce the building vibration. Experimental study is carried out to find the vibration characteristics of the dampers installed in the building model. The natural frequencies and modal damping ratios are obtained from the free vibration test and Fourier analysis. Shaking table test is performed to find the response behavior of the building model under earthquake loading. The present experimental study shows that the bracing dampers have the behavior of viscoelastic dampers, which increase the modal damping ratios and viscoelastic characteristics.

  • PDF