• 제목/요약/키워드: braced wall system

검색결과 30건 처리시간 0.028초

Behavior factors for mixed reinforced concrete wall and buckling restrained braced frame

  • Hamid Beiraghi;Behdad Abbaspour
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.277-290
    • /
    • 2023
  • A supplementary reinforced concrete wall can be used to improve the seismic behavior of a buckling restrained braced frame as a mixed system. In such a novel system, the total lateral force is resisted by the combination of the RC wall system and the BRBF. There is not enough research on the response modification factor of such a mixed system. This paper investigates the response modification factor, and such relevant factors as ductility reduction factor and over strength factor for a system consisting of reinforced concrete wall and buckling restrained braced frame. To this purpose, nonlinear incremental dynamic analysis as well as static push over analysis are used for 6- to 14-story sample structures. The results show that for mixed considered systems, the mean value of response modification factor varies approximately from 7 to 9.

버팀 굴착시 버팀대 선행하중의 인접지반 변위 억제 효과 (Effects of Strut Preloading on the Restraining of Adjacent Ground Displacement at Braced Excavations)

  • 백규호;조현태
    • 한국지반공학회논문집
    • /
    • 제15권1호
    • /
    • pp.31-40
    • /
    • 1999
  • 스크류잭은 스트러트에 충분한 선행하중을 가할 수 없기 때문에 스크류잭을 이용한 버팀대공법은 주변지반의 변위를 억제하는데 효과적이지 못하다. 따라서 버팀 굴착시 주변지반의 과도한 변형을 방지하기 위하여 새로운 선행하중잭을 개발하였다. 본 논문에서는 새로 개발된 선행하중잭과 그 장치를 이용하여 시공한 현장 중 3곳에서 측정한 흙막이벽체의 수평변위에 대한 결과를 소개하였다 현장에서 계측한 결과에 의하면 흙막이벽체의 최대수평변위는 굴착심도의 0.15% 이내로, 스트러트에 가해지는 선행하중에 의하여 최소화될 수 있는 것으로 밝혀졌다. 그리고 경제성 분석을 위하여 스크류잭을 이용한 버팀대공법과 버팀대 선행하중공법에 의한 공비와 공기를 비교한 결과 버팀대 선행하중공법이 공사비와 공사기간의 단축에도 효과적인 것으로 나타났다.

  • PDF

근접 굴착시 흙막이벽 버팀대 선행하중 재하에 따른 터널의 거동 (Behavior of Tunnel Due to Adjacent Ground Excavation with Pre-loading on Braced Wall)

  • 김일;이상덕
    • 한국지반공학회논문집
    • /
    • 제23권10호
    • /
    • pp.163-174
    • /
    • 2007
  • 큰 선행하중을 가할 수 있는 새로운 선행하중 시스템을 개발하였으며, 이를 적용하여 근접굴착 시 기존 터널의 안정성을 확보하는 방안을 연구하였다. 흙막이 벽체의 수평변위가 거의 생기지 않도록 설계축력 이상의 선행하중을 가하였다. 이를 위해 선행하중을 가하지 않는 경우와 선행하중을 가하는 경우에 대해 축소율 1/10인 실 대형 시험을 실시하였다. 수치해석은 선행하중을 가하지 않는 경우와, 선행하중을 설계축력의 50%와 100%를 가하는 경우, 흙막이 벽체 변위를 거의 발생시키지 않는 크기의 선행하중을 가하는 경우에 대해 유한요소법(FEM) 프로그램인 PLAXIS를 사용하여 수행하였다. 그 결과 선행하중을 설계축력 이상으로 적용시켜 흙막이 벽체변위를 억제시켰을 때 벽체 배면 지반에 있는 터널의 안정성이 크게 향상되는 것을 확인할 수 있었다.

근접굴착 시 벽체에 선행하중 재하에 따른 터널의 거동 (Behavior of tunnel under the influence of pre-loading on braced wall during the adjacent ground excavation)

  • 김일;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제9권4호
    • /
    • pp.331-341
    • /
    • 2007
  • 기존터널에 근접 굴착 할 때 발생하는 흙막이벽체의 수평변위를 억제시키기 위해 버팀대에 선행하중을 가했다. 이러한 목적으로 흙막이벽체에 큰 선행하중을 가할 수 있는 새로운 선행하중 시스템을 모형시험에 적용하였다. 대형 시험은 폭 2.0m, 높이 6.0m, 길이 4.0m인 모형 토조에서 수행하였고 시험지반은 모래로 조성하였다. 직경 1.2m인 모형 터널은 시험지반 굴착 전에 설치하고 지반을 조성한 후에 모형터널에 근접해서 흙막이벽체를 설치하고 시험지반을 굴착하면서 모형 터널과 흙막이벽체 및 지반의 거동을 측정하였다. 이때에 선행하중 재하효과를 확인하기 위하여 선행하중을 가하지 않는 시험은 물론 선행하중을 가하여 흙막이벽체의 수평변위를 억제하는 시험을 실시하였고 수치해석을 실시하여 대형 시험결과와 비교하였다. 그 결과 선행하중을 설계축력 이상으로 적용시켜 흙막이벽체의 수평변위를 감소시켰을 때 벽체 배면에 있는 기존 터널의 안정성이 크게 향상되는 것을 확인할 수 있었다.

  • PDF

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

고강도 강관파이프 스트러트 흙막이공법 사례연구 (Case Study of Braced Wall System with High-strength Steel Pipe Strut)

  • 신재민;박현영;주진규;신윤석;김광희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.19-20
    • /
    • 2012
  • According to develop urban area, the depth and floor area of basement tend to become deeper and larger. Excavation work for basement floor work is very important because its cost take 20% of total construction cost. Therefore, many studies of developing retaining wall system have performed for feasibility and safety in deep excavation work. In this study, new supporting system used high-strength pipe for retaining wall is introduced to reduce the construction cost and improve the safety and constructability by analyzing case study.

  • PDF

A simple model for ground surface settlement induced by braced excavation subjected to a significant groundwater drawdown

  • Zhang, Runhong;Zhang, Wengang;Goh, A.T.C.;Hou, Zhongjie;Wang, Wei
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.635-642
    • /
    • 2018
  • Braced excavation systems are commonly required to ensure stability in construction of basements for shopping malls, underground transportation and other habitation facilities. For excavations in deposits of soft clays or residual soils, stiff retaining wall systems such as diaphragm walls are commonly adopted to restrain the ground movements and wall deflections in order to prevent damage to surrounding buildings and utilities. The ground surface settlement behind the excavation is closely associated with the magnitude of basal heave and the wall deflections and is also greatly influenced by the possible groundwater drawdown caused by potential wall leakage, flow from beneath the wall, flow from perched water and along the wall interface or poor panel connections due to the less satisfactory quality. This paper numerically investigates the influences of excavation geometries, the system stiffness, the soil properties and the groundwater drawdown on ground surface settlement and develops a simplified maximum surface settlement Logarithm Regression model for the maximum ground surface settlement estimation. The settlements estimated by this model compare favorably with a number of published and instrumented records.

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.

THE THEORETICAL AND SITE BEHAVIOUR OF A BRACED DIAPHRAGM WALL-A COMPARISON

  • Kim, Hak-Moon
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1990년도 PROCEEDINGS OF THE FIRST KOREA-JAPAN JOINT GEOTECHNICAL SEMINAR ON EXCAVATION and TUNNELING IN URBAN AREAS
    • /
    • pp.111-128
    • /
    • 1990
  • Three numerical analysis carried out for the design of a diaphragm wall were examined by the results of field observation data. Utilizing the wall stiffness, supporting system and construction sequence, the relative merits of those factors on the analysis of diaphragm wall have been investigated and their effects are compared tilth the observed behaviour of the wall. The predicted bending moment and wall displacement by elasto-plastic method agreed well with the observed values. The rigid slab supported system (i.e Top-Down Method) found to be the most effective way of controlling ground movement.

  • PDF

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.