• 제목/요약/키워드: box girder section

검색결과 141건 처리시간 0.024초

Shear lag effect of varied sectional cantilever box girder with multiple cells

  • Guo, Zengwei;Liu, Xinliang;Li, Longjing
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.295-310
    • /
    • 2022
  • This paper proposes a modified bar simulation method for analyzing the shear lag effect of variable sectional box girder with multiple cells. This theoretical method formulates the equivalent area of stiffening bars and the allocation proportion of shear flows in webs, and re-derives the governing differential equations of bar simulation method. The feasibility of the proposed method is verified by the model test and finite element (FE) analysis of a simply supported multi-cell box girder with constant depth. Subsequently, parametric analysis is conducted to explore the mechanism of shear lag effect of varied sectional cantilever box girder with multiple cells. Results show that the shear lag behavior of variable box-section cantilever box girder is weaker than that of box girder with constant section. It is recommended to make the gradient of shear flow in the web with respect to span length vary as smoothly as possible for eliminating the shear lag effect of box girder. An effective countermeasure for diminishing shear lag effect is to increase the number of box chambers or change the variation manner of bridge depth. The shear lag effect of varied sectional cantilever box girder will get more server when the length of central flanges is shorter than 0.26 or longer than 0.36 times of total width of top flange, as well as the cantilever length exceeds 0.29 times of total length of box's flange. Therefore, the distance between central webs can adjust the shear lag effect of box girder. Especially, the width ratio of cantilever plate with respect to total length of top flange is proposed to be no more 1/3.

곡선박스거더교의 뒤틀림효과에 대한 연구 (A Study of the Distortional Effect on Curved Box Girder Bridge)

  • 뉴웬반반;한택희;김성남;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.525-530
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distributional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show up an extensive parametric study on distortional behavior of curved box girder with trapezoidal section. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

A new procedure for load-shortening and -elongation data for progressive collapse method

  • Downes, Jonathan;Tayyar, Gokhan Tansel;Kvan, Illia;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.705-719
    • /
    • 2017
  • Progressive Collapse Method (PCM) has been broadly applied to predict moment-carrying capacity of a hull girder, however accuracy of PCM has not been much studied. Accuracy of PCM is known to be dependent on how Load-Shortening and -Elongation (LSE) curve of a structural units are well predicted. This paper presents a new procedure to determine LSE datum based on box girder Finite Element Analyses (FEAs) instead of using finite element model of stiffened panels. To verify reliability of FEA results, the simple box girder collapse test results are compared with FEA results of same box girders. It reveals one frame-based box girder model is sufficiently accurate in terms of ultimate strengths of the box girders. After extracting LSE data from the box girders, PCM-based moment-carrying capacities are compared with those from FEAs of the box girders. PCM results are found to be equivalent to FEAs in terms of moment-carrying capacity if accurate LSE data are secured. The new procedure is applied to well-known 1/3 scaled frigate full section. Very excellent moment-carrying capacity of frigate hull section is obtained from PCM with LSE data from box girder FEAs.

강 박스 거더교의 격벽응력 해석 (The Stress Analysis of Diaphragm in Steel box girder bridge)

  • 조현영;정진환;박중민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.80-86
    • /
    • 1997
  • Recently, the box-girder bridge became quite popular because of the effectiveness of the box section against torsional deformation, and the finite element method has been one of the powerful and versatile method for obtaining the solution of box-girder bridge. The finite element method is used to solve a box girder which is built up with flat plates such as flanges, webs and diaphragm, and box girder is idealized by 8-nodes 2-dimensional isoparmetric finite element. To investigate the stress of diaphragm, substructure analysis is performed with two Parameters which are the location of support and slope of web.

  • PDF

다실 박스거더의 뒤틀림에 저항하는 강성 산정 (Evaluation of Stiffness Resisting Distortion of Multicell Box Girder)

  • 박남희;최영준;한금호;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.435-442
    • /
    • 2002
  • In a multicell box structure, distortional warping normal stress due to warping of cross section and transverse bending normal stress of walls due to distortion of cross section may consider as significant stresses unless distortion of box section is appropriately restricted. Nevertheless, during the past decades, no evaluation of distortional warping and transverse bending resistances for the multicell box section has been performed owing to geometric complexity and Insufficient information with respect to the distortion of multicell box section. The objective of present study is to evaluate the distortional warping and transverse bending resistances for the distortion of multicell box section and to validate the resistances through box girder analyses using multicell box beam element developed and conventional shell element. This developed box beam element has nine degrees of freedom per node including the effect of distortion.

  • PDF

Aerodynamic Flutter Control for Typical Girder Sections of Long-Span Cable-Supported Bridges

  • Yang, Yongxin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제12권3호
    • /
    • pp.205-217
    • /
    • 2009
  • Aerodynamic flutter control for long-span cable-supported bridges was investigated based on three basic girder sections, i.e. streamlined box girder section, box girder section with cantilevered slabs and two-isolated-girder section. Totally four kinds of aerodynamic flutter control measures (adding fairings, central-slotting, adding central stabilizers and adjusting the position of inspection rail) were included in this research. Their flutter control effects on different basic girder sections were evaluated by sectional model or aeroelastic model wind tunnel tests. It is found that all basic girder sections can get aerodynamically more stabled with appropriate aerodynamic flutter control measures, while the control effects are influenced by the details of control measures and girder section configurations. The control effects of the combinations of these four kinds of aerodynamic flutter control measures, such as central-slotting plus central-stabilizer, were also investigated through sectional model wind tunnel tests, summarized and compared to the flutter control effect of single measure respectively.

중간격벽의 형상을 고려한 상자형 거동에 대한 실험적 연구 (An Experimental Study on Behavior of Box Girder considering Middle Diaphragm Shapes)

  • 정희효;이승열
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.501-510
    • /
    • 2002
  • 상자형의 중간격벽은 상자형의 단면변형을 구속하고 상부플랜지에서 발생되는 하중을 양측의 웨브에 분포시키는 역할을 한다. 그러나 상자형의 내부공간이 중간격벽으로 차단될 경우 내부공간을 활용할 수 없으며 유지관리에 많은 어려움을 격게 된다. 상자형의 격벽이 개구부를 갖는 경우 개구부가 없는 경우에 비하여 어떠한 영향을 갖는지를 실험을 통하여 중간격벽의 강성으로 표현하고자 하였다

P.C 박스거더교의 횡단면 최적설계에 관한 연구 (A Study on tile Cross Section Optimization of P.C Box-Girder Bridge)

  • 방명석;김일곤;조현준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.101-104
    • /
    • 1990
  • The program which could determine cross-sectional dimensions of the box girder bridge at tile stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost and time required in the design of box girder bridges and the construction with the prestressed precast segmental method. Objective cost function consisted of four independent variables such as widths and depth of the cross-section. The Nelder-Mead method was used to solve the nonconstrained nonlinear problem like this.

  • PDF

Effect of beam slope on the static aerodynamic response of edge-girder bridge-deck

  • Lee, Hoyeop;Moon, Jiho;Chun, Nakhyun;Lee, Hak-eun
    • Wind and Structures
    • /
    • 제25권2호
    • /
    • pp.157-176
    • /
    • 2017
  • 2-edge box girder bridges have been widely used in civil engineering practice. However, these bridges show weakness in aerodynamic stability. To overcome this weakness, additional attachments, such as fairing and flap, are usually used. These additional attachments can increase the cost and decrease the constructability. Some previous researchers suggested an aerodynamically stabilized 2-edge box girder section, giving a slope to the edge box instead of installing additional attachments. However, their studies are limited to only dynamic stability, even though static aerodynamic coefficients are as important as dynamic stability. In this study, focus was given to the evaluation of static aerodynamic response for a stabilized 2-edge box girder section. For this, the slopes of the edge box were varied from $0^{\circ}$ to $17^{\circ}$ and static coefficients were obtained through a series of wind tunnel tests. The results were then compared with those from computational fluid dynamics (CFD) analysis. From the results, it was found that the drag coefficients generally decreased with the increasing box slope angle, except for the specific box slope range. This range of box slope varied depending on the B/H ratio, and this should be avoided for the practical design of such a bridge, since it results in poor static aerodynamic response.

제형 단면을 갖는 곡선 박스거더교량의 뒴 뒤틀림 특성에 대한 매개변수 연구 (Parametric Study on Trapezoidal Section in Curved Box Girder Bridge Including Distortional Warping)

  • Nguyen Van, Ban;Kim, Sung-Nam;Kim, Seung-Jun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.297-302
    • /
    • 2007
  • 최근에 빠른 발전을 이루고 있기는 하나, 하중 저항 계수나 미관효과 면에서 박스 거더를 고속도로 분야에 폭넓게 사용하고 있는 실정이다. 최근의 박스 거더 설계를 기반으로 살펴보면 뒤틀림 하중은 그다지 고려되지 않았다. 특히 직선교에서는 뒤틀림 하중의 효과가 작지만 곡선에서는 어떻게 작용하는지 조차 알려진 것이 없었다. 그러한 이유에서 이 연구는 뒤틀림 거동에 미치는 주요한 변수들에 대해 다루었다. 그리고 유한요소법을 사용하는 Dabrowski formula를 바탕으로 하여 다양한 변수의 교량에 대해 연구하였다. 이 연구에서는 다음과 같은 변수들이 사용된다. : 지간장, 곡률반경, 단면높이, 단면폭, 그리고 내부단면각(internal section angle) 연구된 결과로부터 적당한 초기 기하형상에 대한 변수들을 구할 수 있을 것이다.

  • PDF