• Title/Summary/Keyword: box connection

Search Result 126, Processing Time 0.029 seconds

Parameters influencing redundancy of twin steel box-girder bridges

  • Kim, Janghwan;Kee, Seong-Hoon;Youn, Heejung;Kim, Dae Young
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.437-450
    • /
    • 2018
  • A bridge comprising of two girders, such as a twin steel box-girder bridge, is classified as fracture critical (i.e., non-redundant). In this study, the various bridge components of the twin steel box-girder bridge are investigated to determine if these could be utilized to improve bridge redundancy. Detailed finite-element (FE) models, capable of simulating prominent failure modes observed in a full-scale bridge fracture test, are utilized to evaluate the contributions of the bridge components on the ultimate behavior and redundancy of the bridge sustaining a fracture on one of its girders. The FE models incorporate material nonlinearities of the steel and concrete members, and are capable of capturing the effects of the stud connection failure and railing contact. Analysis results show that the increased tensile strength of the stud connection and (or) concrete strength are effective in improving bridge redundancy. By modulating these factors, redundancy could be significantly enhanced to the extent that the bridge may be excluded from its fracture critical designation.

Seismic Analysis Models for Typical Roadway Bridges considering failure Mechanisms (파괴메카니즘을 고려한 일반도로교의 지진해석모델)

  • 국승규;김판배
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.295-301
    • /
    • 2001
  • For the seismic analysis of typical roadway bridges provisions are given in most codes for analysis models, which describes however only fundamental modelling methods according to the basic theories of structural dynamics. In practice even conventional non-seismic analysis models, separate super- and substructure models, are applied, which are not adequate because of neglecting connection elements. In this study three typical roadway bridges, a Steel box bridge, a PC beam bridge and a PC box bridge are selected and simple models integrating super- and substructure as well as connection elements are given. The simple models are composed with frame elements with lumped masses representing stiffness and mass characteristics of the selected bridges. To check the properness of the simple models, analysis results with the simple models are compared with those obtained with detailed models in view of bridge failure mechanisms. It is proved that the simple models can be used in the preliminary design phase fur the determination of failure mechanisms of typical roadway bridges.

  • PDF

Behaviors of box-shape steel reinforced concrete composite beam

  • Yang, Chun;Cai, Jian;Wu, Yi;He, Jiangang;Chen, Haifeng
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.419-432
    • /
    • 2006
  • Experimental studies on the behaviors of box-shape steel reinforced concrete (SRC) composite beams were conducted. Seven 1:3 scale model composite beams were tested to failure. Each of the beams was simply supported at the ends and two concentrated loads were applied at the one-third span and two-thirds span respectively. Experimental results indicate that the flexural strength can be enhanced when the ratio of flexural reinforcements and flange thickness of the shape steel are increased; the shear strength is enhanced with increase of web thickness of the shape steel. Insignificant effects of concrete in the box-shape steel are found on improving the flexural strength and shear strength of the box-shape SRC composite beams, thus concrete inside the box-shape steel can be saved, and the weight of the SRC beams can be decreased. Shear studs can strengthen the connection and co-work effects between the shape steel and the concrete and enhance the shear strength, but stud design for the composite beams should be further improved. Formulas for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box-shape SRC composite beam is a kind of ductile member, and suitable for extensive engineering application.

A Development of Smart Black Box for Grid-connected Solar Power System (계통 연계형 태양광 발전 시스템의 스마트 블랙박스의 개발)

  • Park, Sung-Won;Kim, Dong-Wan;Lee, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2119-2126
    • /
    • 2016
  • In this paper, we developed a smart black box that can monitor and record the information of the sensor from subsystem in the smart grid system. The plant is the complex power system which is integrated by solar power system, grid-connected power systems, and BESS(battery energy storage system). The black box with the web-server application can connect and synchronize to an external monitoring system and a smart phone. We hope that this system is to contribute to improve operational efficiency, reliability, and stability for the smart grid power system.

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2195-2196
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.563-564
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server Fourth one was device solver. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this Property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1229-1230
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer in main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1689-1690
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Mechanical performance of a new I-section weak-axis column bending connection

  • Lu, Linfeng;Xu, Yinglu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.31-44
    • /
    • 2018
  • This paper reports a novel steel beam-to-column connection suitable for use in the weak axis of I-section column. Monotonic and cyclic loading experimental investigations and numerical analysis of the proposed weak-axis connection were conducted, and the calculation procedure of the beam-column relative rotation angle and plastic rotation angle was developed and described in details. A comparative analysis of mechanical property and steel consumption were employed for the proposed I-section column weak-axis connection and box-section column bending connection. The result showed that no signs of fracturing were observed and the plastic hinge formed reliably in the beam section away from the skin plate under the beam end monotonic loading, and the plastic hinge formed much closer to the skin plate under the beam end cyclic loading. The fracture of welds between diaphragm and skin plate would cause an unstable hysteretic response under the column top horizontal cyclic loading. The proposed weak-axis connection system could not only simplify the design calculation progress when I-section column is adopted in frame structural design but also effectively satisfy the requirements of 'strong joint and weak member', as well as lower steel consumption.

Buckling Analysis of Box-typed Structures using Adaptive Finite Elements (적응적 유한요소를 이용한 박스형 구조물의 좌굴해석)

  • Song, Myung-Kwan;Kim, Sun-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.271-274
    • /
    • 2007
  • The finite element linear buckling analysis of folded plate structures using adaptive h-refinement methods is presented in this paper. The variable-node flat shell element used in this study possesses the drilling D.O.F. which, in addition to improvement of the element behavior, permits an easy connection to other elements with six degrees of freedom per node. The Box-typed structures can be analyzed using these developed flat shell elements. By introducing the variable node elements some difficulties associated with connecting the different layer patterns, which are common in the adaptive h-refinement on quadrilateral mesh, can be overcome. To obtain better stress field for the error estimation, the super-convergent patch recovery is used. The convergent buckling modes and the critical loads associated with these modes can be obtained.

  • PDF