• Title/Summary/Keyword: bounding box

Search Result 157, Processing Time 0.026 seconds

3D Walking Human Detection and Tracking based on the IMPRESARIO Framework

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.163-169
    • /
    • 2008
  • In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information. To achieve this goal, we propose a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers have been also presented. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers. Experimental results show that the proposed method can smoothly and effectively detect and track walking humans through environments such as dense forests.

Road Damage Detection and Classification based on Multi-level Feature Pyramids

  • Yin, Junru;Qu, Jiantao;Huang, Wei;Chen, Qiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.786-799
    • /
    • 2021
  • Road damage detection is important for road maintenance. With the development of deep learning, more and more road damage detection methods have been proposed, such as Fast R-CNN, Faster R-CNN, Mask R-CNN and RetinaNet. However, because shallow and deep layers cannot be extracted at the same time, the existing methods do not perform well in detecting objects with fewer samples. In addition, these methods cannot obtain a highly accurate detecting bounding box. This paper presents a Multi-level Feature Pyramids method based on M2det. Because the feature layer has multi-scale and multi-level architecture, the feature layer containing more information and obvious features can be extracted. Moreover, an attention mechanism is used to improve the accuracy of local boundary boxes in the dataset. Experimental results show that the proposed method is better than the current state-of-the-art methods.

Deep-learning Sliding Window Based Object Detection and Tracking for Generating Trigger Signal of the LPR System (LPR 시스템 트리거 신호 생성을 위한 딥러닝 슬라이딩 윈도우 방식의 객체 탐지 및 추적)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.85-94
    • /
    • 2021
  • The LPR system's trigger sensor makes problem occasionally due to the heave weight of vehicle or the obsolescence equipment. If we replace the hardware sensor to the deep-learning based software sensor in order to generate the trigger signal, LPR system maintenance would be a lot easier. In this paper we proposed the deep-learning sliding window based object detection and tracking algorithm for the LPR system's trigger signal generation. The gate passing vehicle's license plate recognition results are combined into the normal tracking algorithm to catch the position of the vehicle on the trigger line. The experimental results show that the deep learning sliding window based trigger signal generating performance was 100% for the gate passing vehicles including the 5.5% trigger signal position errors due to the minimum bounding box location errors in the vehicle detection process.

Object Tracking Algorithm using Feature Map based on Siamese Network (Siamese Network의 특징맵을 이용한 객체 추적 알고리즘)

  • Lim, Su-Chang;Park, Sung-Wook;Kim, Jong-Chan;Ryu, Chang-Su
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.6
    • /
    • pp.796-804
    • /
    • 2021
  • In computer vision, visual tracking method addresses the problem of localizing an specific object in video sequence according to the bounding box. In this paper, we propose a tracking method by introducing the feature correlation comparison into the siamese network to increase its matching identification. We propose a way to compute location of object to improve matching performance by a correlation operation, which locates parts for solving the searching problem. The higher layer in the network can extract a lot of object information. The lower layer has many location information. To reduce error rate of the object center point, we built a siamese network that extracts the distribution and location information of target objects. As a result of the experiment, the average center error rate was less than 25%.

Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network (심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템)

  • Lee, Yoon-Ho;Jeon, Joo-Hyeon;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

Bottleneck-based Siam-CNN Algorithm for Object Tracking (객체 추적을 위한 보틀넥 기반 Siam-CNN 알고리즘)

  • Lim, Su-Chang;Kim, Jong-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2022
  • Visual Object Tracking is known as the most fundamental problem in the field of computer vision. Object tracking localize the region of target object with bounding box in the video. In this paper, a custom CNN is created to extract object feature that has strong and various information. This network was constructed as a Siamese network for use as a feature extractor. The input images are passed convolution block composed of a bottleneck layers, and features are emphasized. The feature map of the target object and the search area, extracted from the Siamese network, was input as a local proposal network. Estimate the object area using the feature map. The performance of the tracking algorithm was evaluated using the OTB2013 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.611 in Success Plot and 0.831 in Precision Plot were achieved.

Augmented Reality Service Based on Object Pose Prediction Using PnP Algorithm

  • Kim, In-Seon;Jung, Tae-Won;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.295-301
    • /
    • 2021
  • Digital media technology is gradually developing with the development of convergence quaternary industrial technology and mobile devices. The combination of deep learning and augmented reality can provide more convenient and lively services through the interaction of 3D virtual images with the real world. We combine deep learning-based pose prediction with augmented reality technology. We predict the eight vertices of the bounding box of the object in the image. Using the predicted eight vertices(x,y), eight vertices(x,y,z) of 3D mesh, and the intrinsic parameter of the smartphone camera, we compute the external parameters of the camera through the PnP algorithm. We calculate the distance to the object and the degree of rotation of the object using the external parameter and apply to AR content. Our method provides services in a web environment, making it highly accessible to users and easy to maintain the system. As we provide augmented reality services using consumers' smartphone cameras, we can apply them to various business fields.

Occlusion Robust Military Vehicle Detection using Two-Stage Part Attention Networks (2단계 부분 어텐션 네트워크를 이용한 가려짐에 강인한 군용 차량 검출)

  • Cho, Sunyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.381-389
    • /
    • 2022
  • Detecting partially occluded objects is difficult due to the appearances and shapes of occluders are highly variable. These variabilities lead to challenges of localizing accurate bounding box or classifying objects with visible object parts. To address these problems, we propose a two-stage part-based attention approach for robust object detection under partial occlusion. First, our part attention network(PAN) captures the important object parts and then it is used to generate weighted object features. Based on the weighted features, the re-weighted object features are produced by our reinforced PAN(RPAN). Experiments are performed on our collected military vehicle dataset and synthetic occlusion dataset. Our method outperforms the baselines and demonstrates the robustness of detecting objects under partial occlusion.

ANOMALY DETECTION FOR AN ORAL HEALTH CARE APPLICATION USING ONE CLASS YOLOV3

  • JAEHUN, BAEK;SEUNGWON, KIM;DONGWOOK, SHIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.310-322
    • /
    • 2022
  • In this report, we apply an anomaly detection algorithm to a mobile oral health care application. In particular, we have investigated one class YOLOv3 as an anomaly detection model to classify pictures of mouths which will be used as inputs in the following machine learning model. We have achieved outstanding performances by proposing appropriate annotation strategies for our data sets and modifying the loss function. Moreover, the model can classify not only oral and non-oral pictures but also output preprocessed pictures that only contain the area around the lips by using the predicted bounding box. Thus, the model performs prediction and preprocessing simultaneously.

YOLOv4 Grid Cell Shift Algorithm for Detecting the Vehicle at Parking Lot (노상 주차 차량 탐지를 위한 YOLOv4 그리드 셀 조정 알고리즘)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.31-40
    • /
    • 2022
  • YOLOv4 can be used for detecting parking vehicles in order to check a vehicle in out-door parking space. YOLOv4 has 9 anchor boxes in each of 13x13 grid cells for detecting a bounding box of object. Because anchor boxes are allocated based on each cell, there can be existed small observational error for detecting real objects due to the distance between neighboring cells. In this paper, we proposed YOLOv4 grid cell shift algorithm for improving the out-door parking vehicle detection accuracy. In order to get more chance for trying to object detection by reducing the errors between anchor boxes and real objects, grid cells over image can be shifted to vertical, horizontal or diagonal directions after YOLOv4 basic detection process. The experimental results show that a combined algorithm of a custom trained YOLOv4 and a cell shift algorithm has 96.6% detection accuracy compare to 94.6% of a custom trained YOLOv4 only for out door parking vehicle images.