• Title/Summary/Keyword: bounding box

Search Result 156, Processing Time 0.03 seconds

Small-Scale Object Detection Label Reassignment Strategy

  • An, Jung-In;Kim, Yoon;Choi, Hyun-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a Label Reassignment Strategy to improve the performance of an object detection algorithm. Our approach involves two stages: an inference stage and an assignment stage. In the inference stage, we perform multi-scale inference with predefined scale sizes on a trained model and re-infer masked images to obtain robust classification results. In the assignment stage, we calculate the IoU between bounding boxes to remove duplicates. We also check box and class occurrence between the detection result and annotation label to re-assign the dominant class type. We trained the YOLOX-L model with the re-annotated dataset to validate our strategy. The model achieved a 3.9% improvement in mAP and 3x better performance on AP_S compared to the model trained with the original dataset. Our results demonstrate that the proposed Label Reassignment Strategy can effectively improve the performance of an object detection model.

Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms (딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템)

  • Min-Seong Choi;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Due to the spread of high-definition black boxes and the introduction of mobile applications such as 'Smart Citizens Report' and 'Safety Report', the number of public interest reports for violations of Traffic Law has increased rapidly, resulting in shortage of police personnel to handle them. In this paper, we describe the development of a system that can automatically detect lane violations which account for the largest proportion of public interest reporting videos for violations of traffic laws, using deep learning algorithms. In this study, a method for recognizing a vehicle and a solid line object using a YOLO model and a Lanenet model, a method for tracking an object individually using a deep sort algorithm, and a method for detecting lane change violations by recognizing the overlapping range of a vehicle object's bounding box and a solid line object are described. Using this system, it is expected that the shortage of police personnel in charge will be resolved.

A Study of AI-based Monitoring Techniques for Land-based Debris in Stream (AI기반 하천 부유쓰레기 모니터링 기술 연구)

  • Kyungsu Lee;Haein Yoon;Jonghwa Won;Sang Hwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.137-137
    • /
    • 2023
  • 해양쓰레기는 해안의 심미적 가치 저하뿐만 아니라 생태계 파괴, 유령 어업에 따른 수산업 피해 등의 사회적·환경적 문제를 발생시키며, 그중 70% 이상은 육상 기인으로 플라스틱 및 기타 쓰레기가 주를 이루는 해외와 달리 국내의 경우 다량의 초목류를 포함하고 있다. 다양한 부유쓰레기에 대한 기존의 해양쓰레기량 추정의 한계와 하천·하구 쓰레기 수거의 효율화를 위해 해양으로 유입되는 부유쓰레기 방지를 위한 실효성 있는 대책 수립이 필요한 실정이다. 본 연구는 해양 유입 전 하천의 차단시설에 차집된 부유쓰레기의 수거 효율화 및 지속가능한 해양쓰레기 데이터 구축을 위해 AI기반의 기술을 통해 부유쓰레기 성상 분석 기법(Object Detection)과 차집량 분석 기법(Semantic Segmentation)을 활용하였다. 실제와 유사한 데이터 수집을 위해 다양한 하천 환경(정수조, 소하천, 급경사수로)에 대해 탁도(녹조, 유사), 광량, 쓰레기형상, 초목류 함량, 날씨(소하천), 유속(급경사수로) 등의 실험조건에 대하여 해양쓰레기 분류 기준 및 통계를 바탕으로 부유쓰레기 종류 선정하여 학습을 위한 데이터를 수집하였다. 학습 목적에 따라 구분하여 라벨링(Bounding box, Polygon)을 수행하고, 각 분석 기법별 전이학습을 통해 Phase 1(정수조), Phase 2(소하천), Phase 3(급경사수로) 순서로 모델을 고도화하였다. 성상 분석을 위해 YOLO v4를 활용하여 Train, Test DataSet(9:1)을 구성하고 학습 및 평가는 Iteration마다의 mAP, loss 값을 통해 비교하였으며, 학습 Phase에 따라 모델 고도화로 Test Set의 mAP 값이 성상별로 높아짐을 확인하였으며, 차집량 분석을 위해 Unet을 활용하여 Train, Test, Validation DataSet(8.5:1:0.5)을 구성하고 epoch별 IoU(intersection over Union), F1-score, loss 값을 비교하여 정성적, 정량적 평가 모두 Phase 3에서 가장 높은 성능을 확인하였다. 향후 하천 환경에서의 다양한 영양인자별 분석을 통해 주요 영향인자 도출 및 Hyper Parameter 최적화를 통한 모델 고도화로 인해 활용성이 높아질 것으로 판단된다.

  • PDF

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.

Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever

  • Ryu, Harry Wooseuk;Tai, Joo Ho
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.17.1-17.10
    • /
    • 2022
  • Background: Inspection of livestock farms using surveillance cameras is emerging as a means of early detection of transboundary animal disease such as African swine fever (ASF). Object tracking, a developing technology derived from object detection aims to the consistent identification of individual objects in farms. Objectives: This study was conducted as a preliminary investigation for practical application to livestock farms. With the use of a high-performance artificial intelligence (AI)-based 3D depth camera, the aim is to establish a pathway for utilizing AI models to perform advanced object tracking. Methods: Multiple crossovers by two humans will be simulated to investigate the potential of object tracking. Inspection of consistent identification will be the evidence of object tracking after crossing over. Two AI models, a fast model and an accurate model, were tested and compared with regard to their object tracking performance in 3D. Finally, the recording of pig pen was also processed with aforementioned AI model to test the possibility of 3D object detection. Results: Both AI successfully processed and provided a 3D bounding box, identification number, and distance away from camera for each individual human. The accurate detection model had better evidence than the fast detection model on 3D object tracking and showed the potential application onto pigs as a livestock. Conclusions: Preparing a custom dataset to train AI models in an appropriate farm is required for proper 3D object detection to operate object tracking for pigs at an ideal level. This will allow the farm to smoothly transit traditional methods to ASF-preventing precision livestock farming.

CenterNet Based on Diagonal Half-length and Center Angle Regression for Object Detection

  • Yuantian, Xia;XuPeng Kou;Weie Jia;Shuhan Lu;Longhe Wang;Lin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1841-1857
    • /
    • 2023
  • CenterNet, a novel object detection algorithm without anchor based on key points, regards the object as a single center point for prediction and directly regresses the object's height and width. However, because the objects have different sizes, directly regressing their height and width will make the model difficult to converge and lose the intrinsic relationship between object's width and height, thereby reducing the stability of the model and the consistency of prediction accuracy. For this problem, we proposed an algorithm based on the regression of the diagonal half-length and the center angle, which significantly compresses the solution space of the regression components and enhances the intrinsic relationship between the decoded components. First, encode the object's width and height into the diagonal half-length and the center angle, where the center angle is the angle between the diagonal and the vertical centreline. Secondly, the predicted diagonal half-length and center angle are decoded into two length components. Finally, the position of the object bounding box can be accurately obtained by combining the corresponding center point coordinates. Experiments show that, when using CenterNet as the improved baseline and resnet50 as the Backbone, the improved model achieved 81.6% and 79.7% mAP on the VOC 2007 and 2012 test sets, respectively. When using Hourglass-104 as the Backbone, the improved model achieved 43.3% mAP on the COCO 2017 test sets. Compared with CenterNet, the improved model has a faster convergence rate and significantly improved the stability and prediction accuracy.

Design of Face with Mask Detection System in Thermal Images Using Deep Learning (딥러닝을 이용한 열영상 기반 마스크 검출 시스템 설계)

  • Yong Joong Kim;Byung Sang Choi;Ki Seop Lee;Kyung Kwon Jung
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Wearing face masks is an effective measure to prevent COVID-19 infection. Infrared thermal image based temperature measurement and identity recognition system has been widely used in many large enterprises and universities in China, so it is totally necessary to research the face mask detection of thermal infrared imaging. Recently introduced MTCNN (Multi-task Cascaded Convolutional Networks)presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask MTCNN is an algorithm that extends MTCNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. It is easy to generalize the R-CNN to other tasks. In this paper, we proposed an infrared image detection algorithm based on R-CNN and detect heating elements which can not be distinguished by RGB images.

Research on Improving the Performance of YOLO-Based Object Detection Models for Smoke and Flames from Different Materials (다양한 재료에서 발생되는 연기 및 불꽃에 대한 YOLO 기반 객체 탐지 모델 성능 개선에 관한 연구 )

  • Heejun Kwon;Bohee Lee;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.261-273
    • /
    • 2024
  • This paper is an experimental study on the improvement of smoke and flame detection from different materials with YOLO. For the study, images of fires occurring in various materials were collected through an open dataset, and experiments were conducted by changing the main factors affecting the performance of the fire object detection model, such as the bounding box, polygon, and data augmentation of the collected image open dataset during data preprocessing. To evaluate the model performance, we calculated the values of precision, recall, F1Score, mAP, and FPS for each condition, and compared the performance of each model based on these values. We also analyzed the changes in model performance due to the data preprocessing method to derive the conditions that have the greatest impact on improving the performance of the fire object detection model. The experimental results showed that for the fire object detection model using the YOLOv5s6.0 model, data augmentation that can change the color of the flame, such as saturation, brightness, and exposure, is most effective in improving the performance of the fire object detection model. The real-time fire object detection model developed in this study can be applied to equipment such as existing CCTV, and it is believed that it can contribute to minimizing fire damage by enabling early detection of fires occurring in various materials.

Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images (핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • The one of the famous deep learning models for object detection task is you only look once version 5 (YOLOv5) framework based on the one stage architecture. In addition, YOLOv5 model indicated high performance for accurate lesion detection using the bottleneck CSP layer and skip connection function. The purpose of this study was to evaluate the performance of YOLOv5 framework according to various hyperparameters in position emission tomogrpahy (PET) phantom images. The dataset was obtained from QIN PET segmentation challenge in 500 slices. We set the bounding box to generate ground truth dataset using labelImg software. The hyperparameters for network train were applied by changing optimization function (SDG, Adam, and AdamW), activation function (SiLU, LeakyRelu, Mish, and Hardwish), and YOLOv5 model size (nano, small, large, and xlarge). The intersection over union (IOU) method was used for performance evaluation. As a results, the condition of outstanding performance is to apply AdamW, Hardwish, and nano size for optimization function, activation function and model version, respectively. In conclusion, we confirmed the usefulness of YOLOv5 network for object detection performance in nuclear medicine images.

Performance Evaluation of YOLOv5s for Brain Hemorrhage Detection Using Computed Tomography Images (전산화단층영상 기반 뇌출혈 검출을 위한 YOLOv5s 성능 평가)

  • Kim, Sungmin;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2022
  • Brain computed tomography (CT) is useful for brain lesion diagnosis, such as brain hemorrhage, due to non-invasive methodology, 3-dimensional image provision, low radiation dose. However, there has been numerous misdiagnosis owing to a lack of radiologist and heavy workload. Recently, object detection technologies based on artificial intelligence have been developed in order to overcome the limitations of traditional diagnosis. In this study, the applicability of a deep learning-based YOLOv5s model was evaluated for brain hemorrhage detection using brain CT images. Also, the effect of hyperparameters in the trained YOLOv5s model was analyzed. The YOLOv5s model consisted of backbone, neck and output modules. The trained model was able to detect a region of brain hemorrhage and provide the information of the region. The YOLOv5s model was trained with various activation functions, optimizer functions, loss functions and epochs, and the performance of the trained model was evaluated in terms of brain hemorrhage detection accuracy and training time. The results showed that the trained YOLOv5s model is able to provide a bounding box for a region of brain hemorrhage and the accuracy of the corresponding box. The performance of the YOLOv5s model was improved by using the mish activation function, the stochastic gradient descent (SGD) optimizer function and the completed intersection over union (CIoU) loss function. Also, the accuracy and training time of the YOLOv5s model increased with the number of epochs. Therefore, the YOLOv5s model is suitable for brain hemorrhage detection using brain CT images, and the performance of the model can be maximized by using appropriate hyperparameters.