• Title/Summary/Keyword: boundary-layer flow

Search Result 1,002, Processing Time 0.024 seconds

Large Eddy Simulation of Boundary Layer Transition on the Turbine Blade (LES를 이용한 축류 터빈 경계층 천이에 대한 수치해석)

  • Jin, Byung-Ju;Park, No-Ma;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.392-397
    • /
    • 2001
  • A numerical study is performed to investigate the interaction between subsonic axial turbine blade boundary layer and periodically oncoming rotor induced wakes. An implicit scheme for solving the compressible Navier-Stokes equation is developed, which adopts a 4th-order compact difference for spatial discretiztion, a 2nd order Crank-Nicolson scheme for temporal discretization and the dynamic eddy viscosity model as the subgrid scale model. The efficiency and the accuracy of the proposed method are verified by applying to some benchmark problems such as laminar cylinder flow, laminar airfoil cascade flow and a transitional flat plate boundary layer flow. Computational results show good agreements with previous experimental and numerical results. Finally, flow through a stator cascade is simulated at $Re = 7.5{\times}10^5$ without free-stream turbulence intensity. The velocity fields and skin friction coefficients in the transitional region show similar trends with previous boundary layer natural transition.

  • PDF

Wall Pressure Fluctuations of the Boundary Layer Flow at the Nose of and Axisymmetric Body (축대칭 물체 선단에서 발생하는 경계층 내 벽면 변동 압력에 관한 연구)

  • 신구균;홍진숙;김상윤;김상렬;박규철
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.602-609
    • /
    • 2000
  • When an axisymmetric body moves through air the boundary layer near the stagnation region remains laminar and subsequently it goes through transition to turbulent. The experimental investigation described in this paper concerns the characteristics of wall pressure fluctuations at the initial stage of boundary layer flow including transition. Flush-mounted microphones are used to measure the wall pressure fluctuations at the transition and turbulent boundary layer region of a blunt axisymmetric body in the low noise wind tunnel. It if found from this study that the wall pressure fluctuations in the transition region is higher than that in the turbulent region.

  • PDF

Effect Of The Separating Shear Layer on the Flow Over an Axisymmetric Backward-Facing Step (박리전단층이 축대칭 하향단흐름에 미치는 영향)

  • 부정숙;김경천;양종필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1102-1115
    • /
    • 1995
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purpose of the present study is to investigate the effect of the boundary layer thickness at the separation point on the reattachment length and to understand the structure of the recirculating flows. Local mean and fluctuating velocity components were measured in the separating and reattaching axisymmetric turbulent boundary layer over the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. The study demonstrated that the reattachment length increases with increasing boundary layer thickness. It was also observed that the reverse flow velocity and turbulent kinetic energy decrease with an increase in the momentum thickness at the separation point. The measured velocity field suggests that the boundary layer thickness at the separation can affect definitely on the formation of corner eddy.

A New Experiment on Interaction of Normal Shock Wave and Turbulent Boundary Layer in a Supersonic Diffuser (초음속디퓨져에서 발생하는 수직충격파의 난류경계층의 간섭에 관한 실험)

  • 김희동;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2283-2296
    • /
    • 1995
  • Experiments of normal shock wave/turbulent boundary layer interaction were conducted in a supersonic diffuser. The flow Mach number just upstream of the normal shock wave was in the range of 1.10 to 1.70 and Reynolds number based upon the turbulent boundary layer thickness was varied in the range of 2.2*10$^{[-994]}$ -4.4*10$^{[-994]}$ . The wall pressures in streamwise and spanwise directions were measured for two test cases, in which the turbulent boundary layer thickness incoming into the supersonic diffuser was changed. The results show that the interactions of normal shock wave with turbulent boundary layer in the supersonic diffuser can be divided into three patterns, i.e., transonic interaction, weak interaction and strong interaction, depending on Mach number. The weak interactions generate the post-shock expansion which its strength is strong as the Mach number increases and the strong interactions form the pseudo-shock waves. From the spanwise measurements of wall pressure, it is known that if the flow Mach number is low, the interacting flow fields essentially appear two-dimensional, but they have an apparent 3-dimensionality for the higher Mach numbers.

Turbulence Characteristics of a Three-Dimensional Boundary Layer on a Rotating Disk with an Impinging Jet (I) - Mean Flow - (충돌제트를 갖는 회전원판 위 3차원 경계층의 난류특성 (I) - 평균유동장 -)

  • Kang, Hyung Suk;Yoo, Jung Yul;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1277-1289
    • /
    • 1998
  • The objective of the present study is to investigate experimentally the mean flow characteristics of the three-dimensional turbulent boundary layer over a rotating disk with an impinging jet at the center of the disk, which may be regarded as one of the simplest models for the flow in turbomachinery. A relatively strong radial outflow (crossflow) generated from the impinging jet is added to the radial outflow (crossflow) induced by the centrifugal force in order to create the three-dimensional boundary layer. A new calibration technique has been introduced to determine the velocity direction and magnitude using an I-wire probe, where the uncertainties are ${\pm}1.5^{\circ}$ and ${\pm}0.35\;m/s$, respectively, in the laminar boundary layer region, compared with the known exact solutions. The flow in the tangential direction is of similar type to that associated with a favorable pressure gradient, considering that no wake region appears in wall coordinate velocity profiles and the Clauser shape factor is between 4.0 and 5.3. The flow angle is significantly changed by the crossflow generated by the impinging jet.

Control of Shock-Wave/Bound-Layer Interactions by Bleed

  • Shih, T.I.P.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 2008
  • Bleeding away a part of the boundary layer next to the wall is an effective method for controlling boundary-layer distortions from incident shock waves or curvature in geometry. When the boundary-layer flow is supersonic, the physics of bleeding with and without an incident shock wave is more complicated than just the removal of lower momentum fluid next to the wall. This paper reviews CFD studies of shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through a single hole, three holes in tandem, and four rows of staggered holes in which the simulation resolves not just the flow above the plate, but also the flow through each bleed hole and the plenum. The focus is on understanding the nature of the bleed process.

Effect of Boundary Layer Thickness on the Flow Around a Rectangular Prism (직사각형 프리즘 주위의 유동구조에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun;Lee, Seung-Hong;Boo, Jeong-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.893-901
    • /
    • 2002
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670 mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer($\delta$=270 mm) was the natural turbulent boundary layer at the test section floor with fairly long developing length(18 m). The thin boundary layer($\delta$=36.5 mm) was generated on the smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity(3 ㎧) and the height of the model(40 mm) was 7.9$\times$10$^3$. The mean velocity vector fields and turbulent kinetic energy distributions were measured and compared. The effect of boundary layer thickness was clearly observed not only in the length of separation bubble but also in the location of reattachment point. The thinner the boundary layer thickness, the higher the turbulent kinetic energy Peak around the model roofbecame. It is strongly recommended that the height ratio between the model and the approaching boundary layer thickness should be encountered as a major parameter.

Numerical Instability Analysis of the Rotating Boundary-Layer flow Including Pre-Swirl (예선회가 존재하는 회전유동장의 불안정성 수치해석)

  • Hwang, Young-Kyu;Lee, Yun-Yong;Lee, Kwang-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.415-423
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for these flows; Ro = -1, -0.5, and 0, using linear stability theory. Detailed numerical values of the disturbance wave number. wave frequency. azimuth angle. radius (Reynolds number, Re) and other characteristics have been calculated for the pre-swirl flows. On the basis of Ekman and Karman boundary layer theory, the instability of the pre-swirl flows have been investigated for the unstable criteria. The disturbance will be relatively fast amplified at small fe and within wide bands of wave number compared with previously known Karman boundary-layer results. The flow (Ro =-0.5) is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.9. It has a larger range of unstable interval than Karman boundary layer and can be unstable at smaller Re.

Reynolds Stress Distribution on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate (평판 근접 후류에서 경계층의 유동조건에 따른 레이놀즈 응력분포)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.53-66
    • /
    • 2004
  • An experimental study was carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. The flow conditions in the vicinity of the trailing edge that is influenced by upstream condition history are an essential factor that determines the physical characteristics of a near-wake. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed in order to investigate the evolution of symmetric and asymmetric wake. An x-type hot-wire probe(55P61) is employed to measure at 8 stations in the near-wake. Test results show that the near-wake for the case of a turbulent boundary layer is relatively insensitive to instability after separating at the trailing edge, and Reynolds shear stress in the near-wake for the case of a turbulent boundary layer collapses due to turbulent kinetic energy.

  • PDF

Laboratory Experiment of Two-Layered Fluid in a Rotating Cylindrical Container (Simulation of polar Front) (원통형 이층유체의 회전반실험 (극전선 모의))

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • Rotating right cylinder of rigid sloping boundaries(top-bottom) is filled with two-layered fluid. External fluid which has the same density as the lower-layer is pumped through the rim boundary at the bottom, and this induces uniform vertical velocity in the interior that produces the Sverdrup type motion such as southward flowing western boundary current with northward interior horizontal motion. The rigid sloping upper boundary meets with lower layer to simulate so called "polar front", and the upper-layer motion influenced by the lower-layer flow has been observed. Barotropic motion in the western part of the basin while baroclinic motion in the eastern half is always present. In particular, both southward flowing eastern boundary flow and western boundary flow meets near the western wall and it induces northward western boundary flow to separate from the boundary With increased ${\beta}$-effect on the upper0layer the width of western boundary decreases and the separated western boundary flow moves into the interior to form an eddy-like motion. Baroclinic Rosebay wave clearly observed in the easter boundary slowly propagates to the west but it seems to be decayed before travelling to the western boundary. A local topograpic effect imposed on the lower-layer causes very sensitive response of upper layer boundary flows. In the east standing0wave0like features are observed in the west whereas the width of the boundary increases without any evidence of the separation of the western boundary flow.This may be due to the gact that even the lower-lauer barotropic motion feels the topography its influence does not propagate into the upper-layer. With large ${\beta}$-effect on the upper-layer,relatively large scale waves whose wavelengths are greater than the internal radius deformation exist in the interior.

  • PDF