• Title/Summary/Keyword: boundary layer separation

Search Result 238, Processing Time 0.022 seconds

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path (굽어진 유로 내부의 충격파-경계층 상호작용 수치연구)

  • Kim, Jae-Eun;Jeong, Seung-Min;Choi, Jeong-Yeol;Hwang, Yoojun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.36-44
    • /
    • 2021
  • Numerical analysis was performed on the shock wave-boundary layer interaction generated in the internal flow path of the curved interstage of the scramjet engine flight test vehicle. For numerical analysis, the turbulence model k-ω SST was used in the compressibility Raynolds Averaged Navier Stokes(RANS) equation. Representatively, the separation bubbles on the upper wall of the nozzle, the interaction between the concave shock wave and the boundary layer, and the shock wave-shock wave interaction at the edge were captured. The analysis result visualizes the shock wave-boundary layer interaction of the curved internal flow path to enhance understanding and suggest design considerations.

Experimental Study on Flow Noise Generated by Axi-symmetric Boundary Layer (II) - Forced Transition on an Axi-symmetric Nose and Radiated Sound - (축대칭 물체의 경계층 유동소음에 대한 실험적 연구(II) - 전두부 천이제어 및 방사소음 -)

  • Lee, Seung-Bae;Kim, Hooi-Joong;Kwon, O-Sup;Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1326-1334
    • /
    • 2000
  • The oscillatory excitation with a Strouhal number of 2.65 ncar the stagnation zone of hemispherical nose model was employed to control the laminar separation bubble and the transition to turbulence. The effects of oscillatory excitation upon the separation bubble and the transition were addressed in terms of kurtosis/skewness and time-frequency analyses. The measured noise spectrum of radiated sound from the turbulent boundary layer on the axi-symmetric infinite cylinder is compared with that by Sevik's wave-number white approximations. The noise sources in TBL on axi-symmetric cylinder and the caling of their far-field sound are also discussed.

Plume Interference Effects on the Missile with a Simplified Afterbody at Transonic$^{}$ersonic Speeds

  • Kim, H. S.;Kim, H. D.;Lee, Y. K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.41-42
    • /
    • 2002
  • The powered missiles with very high thrust level can make highly underexpanded jet plume downstream of tile exhaust nozzle exit so that strong interactions between the exhaust plume and a free stream occur around the body at transonic or supersonic speeds. The interactions result in extremely complicated flow phenomena, which consist of plume-induced boundary layer separation, strong shear layers, various shock waves, and interactions among these. The flow characteristics are inherent nonlinear and severe unstable during the flight at its normal speed as well as taking-off and landing. Eventually, the induced boundary layer separation and pitching and yawing moments by the interactions cause undesirable effects ell the static stability and control of a missile.

  • PDF

LOW-SPEED AERODYNAMIC CHARACTERISTIC OF TRANSITION FLOW OVER THE NACA0012 (NACA0012 천이 유동의 저속 공력 특성 해석)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Kim, Sang-Ho;Byun, Yung-Hwan;Jung, Kyung-Jin;Kang, In-Mo
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • Laminar separation bubble and transitional flow over the NACA0012 are investigated at a moderate range of Reynolds numbers. A Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for the NACA0012 airfoil. Results of transition onset point and the length are compared well with experimental data and Xfoil prediction. The present RANS results show at high angles of attack better agreement with experimental data than Xfoil results using the boundary layer equations.

An Experimental Study on the Pressure Distribution for the Surface of a Road Vehicle Model Subjected to Various Wind Direction (풍향의 변화에 따른 자동차 모형 표면의 압력분포에 대한 실험적 연구)

  • 지호성;김경천;박원규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.84-91
    • /
    • 2001
  • To investigate the aerodynamic characteristics of the on a road vehicle, experimenrs were performed at an Atmospheric Boundary Layer Wind Tunnel. The scaled model of an automobile with 1 : 3 scaling ratio was used. The Reynolds number based on the free stream velocity and model length was $7.93{\times}10^5$. The influence of crosswind to the stability of automobile was investigated by the pressure distribution measurements and flow visualization studies. with the variation of the angle of attack, the change in pressure coefficient depends highly on the flow separation regimes. The experimental and numerical results are compared and found to be in good agreements.

  • PDF

A Numerical study of flowfield around a transonic airfoil accompanying shock (충격파를 동반한 천음속 에어포일 주위의 유동 수치해석)

  • Kim, Jae-Min;Kim, Mun-Sang
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.415-420
    • /
    • 2013
  • 천음속 영역에서 비행하는 에어포일 주위의 유동은 아음속 영역과는 달리 충격파(Shockwave)를 동반하고 이에 따라 복잡한 유동 현상이 발생한다. 본 연구는 천음속 영역에서 설계된 에어포일 주위의 유동에서 충격파 발생에 따른 유동변화의 특징들을 관찰하였다. 특히, 충격파에 의해서 발생하는 진동(Buffeting)과 경계층 유동 박리(Shock-induced boundary layer separation)현상에 대한 관찰과 일반적인 에어포일과 초임계 에어포일(Supercritical airfoil)간의 유동 특성의 차이점을 분석하였다. 본 연구를 위해서 EDISON CFD코드가 사용되었다.

  • PDF

Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow - (입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 -)

  • Choi, Min-Suk;Park, Jun-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

A study for laminar and turbulent boundary layer theory around a Joukowski and NACA-0012 airfoil by CFD (Airfoil 주변에서의 층류 및 난류경계층 이론에 대한 수치해석)

  • Je, Du-Ho;Hwang, Eun-Seong;Lee, Jang-Hyeoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1533-1539
    • /
    • 2013
  • In the present study, we compared the theory with CFD data about the boundary layer thickness, displacement thickness and momentum thickness. According to the freestream velocity, larminar and turbulent is decided and affect to the flow patterns around the airfoil The boundary layer thickness, displacement thickness and momentum thickness affect to the aerodynamic characteristics of the airfoil(e.g. lift, drag and pitching moment). The separation point is affected by varying angle of attack. In the present study, we used the Joukowski airfoil(c=1), and NACA0012 airfoil was used at CFD. The chord Reynolds number is $Re_c$=3,000, 700,000, respectively and the freestream velocity is 0.045, 10 m/s, respectively. In this paper, the data was a good agreement with that of experimental results, so we can analyze the various airfoil models.

Redeveloping Turbelent Boundary Layer after Separation-Reattachment(II) -A Consideration on Turbulence Models- (박리-재부착 이후의 재발달 난류경계층 II -난류 모델들에 관한 고찰-)

  • 백세진;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.999-1011
    • /
    • 1989
  • A consideration on the trubulence models for describing the redeveloping turbulent boundary layer beyond separation-reattachment in the flow over a backward-facing step is given through experimental and numerical studies. By considering the blance among the measured values of respective terms in the transport equations for the turbulent kinetic energy and the turbulent shear stress, the recovering process of the redeveloping boundary layer from non-equilibrium to equilibrium has been investigated, which takes place slowly over a substantial distance in the downstream direction. In the numerical study, the standard K-.epsilon. model and the Reynolds stress model have been applied to two kinds of flow regions, one for the entire downstream region after the backward-facing step and another for the downstream region after reattachment. Then the results are compared to a meaningful extent, with the experimental values of the turbulent kinetic energy k, the turbulent energy production term P, the dissipation term K-.epsilon. model, a necessity for a new modelling has been brought forward, which can be also applied to the case of the nonequlibrium turbulent flow.