• 제목/요약/키워드: boundary layer problem

검색결과 222건 처리시간 0.02초

스파이크가 부착된 유도탄의 공력 가열 해석 (Aerodynamic Heating Analysis of Spike-Nosed Missile)

  • 정석영;윤성준;변우식;안창수
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.21-29
    • /
    • 2004
  • Numerical analysis of aerodynamic heating for KPSAM is performed using aerodynamic heating model suitable to KPSAM, which has complex flow field resulting from the spike attached to the dome, such as large separation area and the strong shock/boundary layer interaction region around reattachment point on the dome. The aerodynamic heating model is validated and modified through the comparison between the flight test measurement and the thermal analysis results. TFD temperature sensors are installed on the dome to measure surface temperature during the flight. Computation results, obtained from the heat transfer analysis on the sensors, agree well with flight test data. The aerodynamic heating model provides heat transfer rate into surface as a boundary condition of unsteady 1D/axisymmetric thermal analysis on the missile structure. The axisymmetric thermal analysis using FLUENT is more versatile than the 1D analysis and can be applied to the heating problem related with complex structures and multi-dimensional heat transfer problems such as prediction of temperature rise at contact surface of different materials.

보정한 Bleed 모델을 이용한 초음속 흡입구 버즈 제어 (SUPERSONIC INLET BUZZ CONTROL USING CORRECTED BLEED MODEL)

  • 곽인근;이승수
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.82-89
    • /
    • 2013
  • Database of a bleed model has been corrected and numerical simulations have been performed to control buzz using the corrected bleed model. The existing bleed model, which was developed as a part of a boundary condition model for porous bleed walls, underestimates bleed flow rate because flow accelerations near the bleed regions are ignored. Also, it overpredicts the sonic flow coefficient when the bleed plenum pressure ratio is high. To correct these problems, and to enhance the performance of the bleed model, the database has been corrected using CFD simulations to compensate for the flow acceleration near the bleed region. Futhermore, the database of the bleed model is extended with the second order extrapolation. The corrected bleed model is validated with numerical simulations of a shock-boundary layer interaction problem over a solid wall with a bleed region. Using the corrected bleed model, numerical simulations of supersonic inlet buzz are performed to find the deterrent effects of bleed on buzz. The results reveal that bleed is effective to prevent buzz and to enhance the inlet performance.

접지평면위에 2개의 유전체층을 가지는 도체띠 격자구조에서의 전자파산란 해석 (Analysis of the Electromagnetic Scattering by Conducting Strip Gratings with 2 Dielectric Layers)

  • 김용연;방성일
    • 한국산업정보학회논문지
    • /
    • 제4권1호
    • /
    • pp.102-109
    • /
    • 1999
  • 본 논문에서는 접지평면위에 2개의 유전체 층을 가지는 완전도체 격자구조에서의 전자파 산란문제를 간단한 방수치해석 방법으로 잘 알려진 PMM방법을 적용하여 입사각에 따라 수치해석하였다. 산란전자계는 Floquet 모드 함수의 급수로 전개하였다. 경계조건은 미지의 계수를 구하기 위하여 적용하였고, 도체의 경계조건은 접선성분의 전계와 스트립 위의 전류와의 관계를 위해 적용하였다. 입사각이 수직일 때 비유전율이 증가함에 따라 기하광학적 반사전력의 변하는 최소점은 스트립 폭이 높은 값으로 이동한다는 것은 주목되며, 이때 수직입사시 대부분의 전력은 다른 각도의 방향으로 산란된다.

  • PDF

원관내 왕복유동에서 비정상 열전달 관계식의 공식화 (A new formulation for unsteady heat transfer of oscillatory flow in a circular tube)

  • 박상진;이대영;노승탁
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.2953-2964
    • /
    • 1996
  • 왕복유동에 의한 순간 열전달현상은, 왕복유동의 두가지 특성인 왕복주파수와 왕복거리를 나타내는 .betha.와 .gamma.에 의하여 결정되고, 그 특성에 따라 세영역으로 나누어짐을 확인하였다. 영역 I에서는 일방향유동에서와 마찬가지로 열유속이 평균온도차에 비례하고, 영역 II에서는 열유속과 평균온도차간에 약 45.deg.의 위상차가 발생하지만 모두 1차 조화성분이 주로 나타났다. 한편 영역 III의 경우에는 위상차가 생길뿐만 아니라 평균온도차에 고차 조화성분이 나타났다. 기존의 방법인 복소 Nusselt수를 고차 조화성분까지 확장하면 열유속을 평균온도차로 나타낼 수 있지만 각 조화성분의 정보를 다 알아야하므로 실제 적용이 불가능하였다.

Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells

  • Ahmadi, Isa;Najafi, Mahsa
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1193-1214
    • /
    • 2016
  • In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is investigated in the numerical results.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions

  • Fan, Linyuan;Kong, Degang;Song, Jun;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.29-45
    • /
    • 2022
  • The optimization for dynamic response associated with a cylindrical shell which is made of laminated composites embedded in a piezoelectric layer which is subjected to temperature rises and is resting on an elastic foundation is investigated for the first time. The first shear order theory (FSDT) is utilized in order to obtain the strain relations of the shell. Then, using the energy method, the equations of motions as well as boundary condition of the problem are attained. The formulation of this study together with the solution procedure which is a numerical solution method, differential quadrature method (DQM) is validated using other researches. This paper presents a thorough study on the parameters which impacts the vibration frequency of the laminated shell. The results of this paper shows that any type of laminated composite shell can reduce the vibration frequency providing that the angle related to layer are higher than 85 degrees. Also, in order to reduce the effect of temperature rises, the laminated composites instead of orthotropic one can be used.

A new algorithm for design of support structures in additive manufacturing by using topology optimization

  • Haleh Sadat Kazemi;Seyed Mehdi Tavakkoli
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.93-107
    • /
    • 2023
  • In this paper, a density based topology optimization is proposed for generating of supports required in additive manufacturing to maintain the overhanging regions of main structures during layer by layer fabrication process. For this purpose, isogeometric analysis method is employed to model geometry and structural analysis of main and support structures. In order to model the problem two cases are investigated. In the first case, design domain of supports can easily be separated from the main structure by using distinct isogeometric patches. The second case happens when the main structure itself is optimized by using topology optimization and the supports should be designed in the voids of optimum layout. In this case, in order to avoid boundary identification and re-meshing process for separating design domain of supports from main structure, a parameterization technique is proposed to identify the design domain of supports. To achieve this, two density functions are defined over the entire domain to describe the main structure and supporting areas. On the other hand, since supports are under gravity loads while main structure and its stiffness is not completed during manufacturing process, in the proposed method, stiffness of the main structure is considered to be trivial and the gravity loads are also naturally applied to design support structures. By doing so, the results show reasonable supports are created to protect, continuously, overhanging surfaces of the main structure. Several examples are presented to demonstrate the efficiency of the proposed method and compare the results with literature.

복합재료적층판의 진동해석을 위한 유한요소모델 II. 유한요소모델의 유도 및 해석 (Finite Element Analysis for Vibration of Laminated Plate Using a Consistent Discrete Theory Part II : Finite Element Formulation and Implementations)

  • 홍순조
    • 전산구조공학
    • /
    • 제7권4호
    • /
    • pp.103-111
    • /
    • 1994
  • 앞의 논문 Part 1 에서 유도한 변분원리를 이용하여 복합재료적층판의 진동해석을 할 수 있는 유한요소해석 모델을 개발하였다. 이 모델에서는 어느 한 층의 면내 변위와 나머지층 단면의 회전각, 그리고 판 전체의 연직방향처짐을 절점변수로 취하게 되어 n개층으로된 적층판의 경우 2(n+1)+1의 절점 자유도를 갖는다. 따라서, 판의 주변에서는 한층의 면내변위와 각층단면의 회전각을, 판의 면내에서는 연직방향 처짐을 경계조건값으로 정의할 수 있다. 이 모델에 의해 개발한 프로그램을 이용하여 각층의 재료특성이 크게 다른 혼종형 복합재료적층판(hybrid laminate)의 고유진동문제를 해석하였다. 탄성이론해 및 다른 유한요소해석결과와 본 해석결과와의 비교를 통해 제시모델이 기존의 다른 유한요소모델보다 정확함을 예시하였다.

  • PDF

INFLUENCE OF THERMAL CONDUCTIVITY AND VARIABLE VISCOSITY ON THE FLOW OF A MICROPOLAR FLUID PAST A CONTINUOUSLY MOVING PLATE WITH SUCTION OR INJECTION

  • Salem, A.M.;Odda, S.N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권2호
    • /
    • pp.45-53
    • /
    • 2005
  • This paper investigates the influence of thermal conductivity and variable viscosity on the problem of micropolar fluid in the presence of suction or injection. The fluid viscosity is assumed to vary as an exponential function of temperature and the thermal conductivity is assumed to vary as a linear function of temperature. The governing fundamental equations are approximated by a system of nonlinear ordinary differential equations and are solved numerically by using shooting method. Numerical results are presented for the distribution of velocity, microrotation and temperature profiles within the boundary layer. Results for the details of the velocity, angular velocity and temperature fields as well as the friction coefficient, couple stress and heat transfer rate have been presented.

  • PDF