• Title/Summary/Keyword: boundary layer integral

Search Result 108, Processing Time 0.025 seconds

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

Effects of Combustor-Level High Free-Stream Turbulence on Blade-Surface Heat/Mass Transfer in the Three-Dimensional Flow Region near the Endwall of a High-Turning Turbine Rotor Cascade

  • Lee Sang Woo;Kwon Hyun Goo;Park Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1347-1357
    • /
    • 2005
  • Effects of combustor-level high free-stream turbulence on the blade-surface heat/mass transfer have been investigated in the three-dimensional flow region near the endwall within a high-turning turbine rotor cascade passage. Free-stream turbulence intensity and integral length scale in the high turbulence case are 14.7 percents and 80 mm, respectively. The result shows that there is no considerable discrepancy in the blade heat/mass transfer near the endwall between the low and high turbulence cases. As departing from the endwall, however, the deviation between the two cases becomes larger, particularly in the region where flow separation and re-attachment occur. Under the high turbulence, flow disturbances such as boundary-layer separation and re-attachment seem to be suppressed, which makes the blade heat/mass transfer more uniform. Moreover, there are some evidences that endwall vortices tend to be weakened under the high turbulence.

A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

  • Shen, Hanlin;Luo, Xin;Liang, Guilin;Shen, Anwen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1708-1719
    • /
    • 2018
  • A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

Design of maximum lift airfoil in viscous, compressible flow (점성, 압축성을 고려한 최대양력 익형설계)

  • 손병진;맹주성;최상경;조기현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-115
    • /
    • 1988
  • A numerical procedure for determining the airfoil shape that maximizes the lift is presented. The structure of the flow field is calculated by iteratively coupling potential flow and boundary analysis using the viscous-inviscid interaction method. The potential flow field is obtained by the vortex panel method and boundary layer flow is analyzed by means of integral approximation method which is capable of handling the laminar, transition and turbulent flow regimes. As the result of this study, it is found that the calculated flow regimes have good agreement with the existing experimented data. Davidon-Fletcher-Powell method and Augmented Lagrange Multiplier method are used for the optimal techniques. NACA 23012, NACA 65-3-21, NACA 64-2-415, NACA 64-2-A215 airfoils are used for determining the optimal airfoil shapes as a basic and compensate airfoils. Optimal design showed that the lift coefficients are increased by 17.4% at M$_{0}$=0.2 and 29% at M$_{0}$=0.3, compared with those of basic airfoil.oil.

A Downwardly Deflected Symmetric Jet to prevent Edge Overcoating in Continuous Hot-Dip Galvanizing (연속식 용융아연도금 공정에서 단부 과도금 현상을 방지하기 위한 하향 대칭 분류유동 연구)

  • Ahn, Gi-Jang;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1156-1162
    • /
    • 2005
  • In this study, a noble method is proposed to prevent the edge overcoating (EOC) that may develop near the edge of the steel strip in the gas wiping process of continuous hot-dip galvanizing. In our past study (Trans. of the KSME (B), Vol. 27, No. 8, pp. $1105\~1113$), it was found that EOC is caused by the alternating vortices which are generated by the collision of two opposed jets in the region outside the steel strip. When the two opposed jets collide at an angle much less than $180^{o}$, non-alternating stable vortices are established symmetrically outside the steel strip, which lead to nearly uniform pressure on the strip surface. In order to deflect both jets downward by a certain angle, a cylinder with small diameter is installed tangentially to the exit of the lower lip of the two-dimensional jet. In order to find an optimum cylinder diameter, the three dimensional flow field is analysed numerically by using the commercial code, STAR-CD. And the coating thickness is calculated by using an integral analysis method to solve the boundary layer momentum equation. In order to compare the present noble method with the conventional baffle plate method to prevent the EOC, the flow field with a baffle plate is also calculated. The calculation results show that the tangentially installed cylinder at the bottom lip of the jet exit is more effective than the baffle plate to prevent EOC.

An analytical study on the heat transfer of the laminar filmwise condensation on a vertical surface (수직평판에서 층류막상 응축열전달에 관한 해석적 고찰)

  • 김형섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 1980
  • Two phase boundary layer equations of laminar filmwise condensation are solved by an approximate integral method under the following condition; saturated vapour flows vertically downward over a cooled surface of uniform temperature, the condensate film is so thin that the inertia and convection terms are neglected. The following conclusions are drawn under the above assumptions. 1. free convection In case of the linear temperature profile in a liquid film, numerical results for the average coefficients of heat transfer may be expressed as N $u_{m}$=4/3,(G $r_{l}$ /4.H)$^{1}$4/ and in case of the quadratic profile, numerical results may be expressed as N $u_{m}$=2/1.682,(G $r_{l}$ /H)$^{1}$4/. 2. Forced convection When the temperature profile is assumed to be linear in a liquid film, numerical results fir the average heat transfer coefficients may be expressed as N $u_{m}$=(A, R $e_{l}$ /H)$^{1}$2/. This expression is compared with the experimental results hitherto reported; For theoretical Nusselt number (N $u_{m}$)$_{th}$<2*10$^{4}$, the experimental Nusselt number (N $u_{m}$)$_{exp}$ is on the average larger than theoretical Nusselt number (N $u_{m}$)$_{th}$ by 30%. For (N $u_{m}$)$_{th}$>2*10$^{4}$, experimental Nusselt number (N $u_{m}$)$_{exp}$ is about 1.6 times as large as theoretical Nusselt number (N $u_{m}$)$_{th}$. These large deviation may be caused by the presence of turbulence in the liquid film. In case of the quadratic temperature profile in a liquid film, numerical results for the average coefficients of heat transfer may be expressed as N $u_{m}$'=(2,A,Re/H)$^{1}$2/. This formular shows that theoretical Nusselt number (N $u_{m}$)$_{th}$ is larger than experimental Nusselt number (N $u_{m}$)$_{exp}$ by 60%. It is speculated that when the temperature difference between cooled surface and saturated vapour is small, temperature profile in a liquid film is quadratic.quadratic.. quadratic.quadratic..atic..

  • PDF

Nonlinear interaction behaviour of plane frame-layered soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.711-734
    • /
    • 2012
  • The foundation of a tall building frame resting on settable soil mass undergoes differential settlements which alter the forces in the structural members significantly. For tall buildings it is essential to consider seismic forces in analysis. The building frame, foundation and soil mass are considered to act as single integral compatible structural unit. The stress-strain characteristics of the supporting soil play a vital role in the interaction analysis. The resulting differential settlements of the soil mass are responsible for the redistribution of forces in the superstructure. In the present work, the nonlinear interaction analysis of a two-bay ten-storey plane building frame- layered soil system under seismic loading has been carried out using the coupled finite-infinite elements. The frame has been considered to act in linear elastic manner while the soil mass to act as nonlinear elastic manner. The subsoil in reality exists in layered formation and consists of various soil layers having different properties. Each individual soil layer in reality can be considered to behave in nonlinear manner. The nonlinear layered system as a whole will undergo differential settlements. Thus, it becomes essential to study the structural behaviour of a structure resting on such nonlinear composite layered soil system. The nonlinear constitutive hyperbolic soil model available in the literature is adopted to model the nonlinear behaviour of the soil mass. The structural behaviour of the interaction system is investigated as the shear forces and bending moments in superstructure get significantly altered due to differential settlements of the soil mass.

A new and simple HSDT for thermal stability analysis of FG sandwich plates

  • Menasria, Abderrahmane;Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.157-175
    • /
    • 2017
  • The novelty of this work is the use of a new displacement field that includes undetermined integral terms for analyzing thermal buckling response of functionally graded (FG) sandwich plates. The proposed kinematic uses only four variables, which is even less than the first shear deformation theory (FSDT) and the conventional higher shear deformation theories (HSDTs). The theory considers a trigonometric variation of transverse shear stress and verifies the traction free boundary conditions without employing the shear correction factors. Material properties of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law variation in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is employed to derive the governing equations as an eigenvalue problem. The validation of the present work is checked by comparing the obtained results the available ones in the literature. The influences of aspect and thickness ratios, material index, loading type, and sandwich plate type on the critical buckling are all discussed.