• 제목/요약/키워드: boundary layer flow separation

검색결과 196건 처리시간 0.01초

An Investigation on Separation Configurations in Compressor Cascades with Boundary Layer Suction(BLS)

  • Zhang, Hualiang;Tan, Chunqing;Zhang, Dongyang;Wang, Songtao;Wang, Zhongqi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.143-149
    • /
    • 2008
  • A numerical study was performed for a vane of a compressor with a high-turning angle and meridional divergence. At first, the effect of the suction position was discussed. Then, the optimal suction position was applied to the cascades with the aspect ratio of 2.53 and 0.3, respectively, to get the knowledge of the effect of the endwall boundary layer removal on the secondary flow along the blade height. At last, using the critical principles of the three-dimensional separation, the topological structures of the flow patterns of the body surfaces and the separation configurations were discussed in detail. The results show that the largest reduction of the total loss can be achieved when the suction slot is near the suction side. The topological structure as well as the separation configuration varies due to boundary layer removal, which restrains the flow separation at the corner and delays or depresses the separation on the suction surface. Compared with the original cascade, the cascade with the endwall boundary layer removal has a higher blade loading along the most span. Furthermore the flow loss decreases and distributes uniformly along the span.

  • PDF

박리전단층이 축대칭 하향단흐름에 미치는 영향 (Effect Of The Separating Shear Layer on the Flow Over an Axisymmetric Backward-Facing Step)

  • 부정숙;김경천;양종필
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1102-1115
    • /
    • 1995
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purpose of the present study is to investigate the effect of the boundary layer thickness at the separation point on the reattachment length and to understand the structure of the recirculating flows. Local mean and fluctuating velocity components were measured in the separating and reattaching axisymmetric turbulent boundary layer over the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. The study demonstrated that the reattachment length increases with increasing boundary layer thickness. It was also observed that the reverse flow velocity and turbulent kinetic energy decrease with an increase in the momentum thickness at the separation point. The measured velocity field suggests that the boundary layer thickness at the separation can affect definitely on the formation of corner eddy.

다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성 (Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor)

  • 신유환;;김광호
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.

Effect of Reynolds number on compressible convex-corner flows

  • Chung, Kung-Ming;Chang, Po-Hsiung;Chang, Keh-Chin
    • Advances in aircraft and spacecraft science
    • /
    • 제1권4호
    • /
    • pp.443-454
    • /
    • 2014
  • An experimental study was conducted to investigate the effect of Reynolds number on compressible convex-corner flows, which correspond to an upper surface of a deflected flap of an aircraft wing. The flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses or Reynolds numbers. It is found that boundary layer Reynolds number, ranging from $8.04{\times}10^4$ to $1.63{\times}10^5$, has a minor influence on flow expansion and compression near the corner apex in the transonic flow regime, but not for the subsonic expansion flow. For shock-induced separated flow, higher peak pressure fluctuations are observed at smaller Reynolds number, corresponding to the excursion phenomena and the shorter region of shock-induced boundary layer separation. An explicit correlation of separation length with deflection angle is also presented.

구에 설치한 딤플과 표면 거칠기에 의한 항력 감소 메커니즘 (Mechanism of Drag Reduction by Dimples and Roughness on a Sphere)

  • 최진;전우평;최해천
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2006
  • In this paper, we present a detailed mechanism of drag reduction by dimples and roughness on a sphere by measuring the streamwise velocity above the dimpled and roughened surfaces, respectively. Dimples cause local flow separation and trigger the shear layer instability along the separating shear layer, resulting in generation of large turbulence intensity. With this increased turbulence, the flow reattaches to the sphere surface with high momentum near the wall and overcomes strong adverse pressure gradient formed in the rear sphere surface. As a result, dimples delay main separation and reduce drag significantly. The present study suggests that generation of a separation bubble, i.e. a closed-loop streamline consisting of separation and reattachment, on a body surface is an important flow-control strategy for drag reduction on a bluff body such as the sphere and cylinder. In the case of roughened sphere, the boundary layer flow is directly triggered by roughness and changes to a turbulent flow. Due to this change, the drag significantly decreases. As the Reynolds number further increases, transition to turbulence occurs earlier on the sphere surface. Because of faster growth of turbulent boundary layer by roughness, earlier transition thickens the boundary layer, resulting in earlier separation and drag increase with increasing Reynolds number

  • PDF

강하게 가열된 벽면 위에서 충격파에 의한 경계층 박리의 제거에 관한 수치 연구 (Numerical Study on the Suppression of Shock Induced Separation on a Strongly Heated Wall)

  • 이덕봉;신준철
    • 한국전산유체공학회지
    • /
    • 제2권2호
    • /
    • pp.59-72
    • /
    • 1997
  • A numerical model is constructed to simulate the interactions of oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the adiabatic wall temperature and the shock wave is strong enough to induce boundary layer separation. The numerical diffusion in the finite volume method is reduced by the use of a higher order convection scheme(UMIST scheme) which is a TVD version of QUICK scheme. The turbulence model is Chen-Kim two time scale model. The comparison of the wall pressure distribution with the experimental data ensures the validity of this numerical model. The effect of strong wall heating enlarges the separation region upstream and downstream. In order to eliminate the separation, wall suction is applied at the shock foot position. The bleeding slot width is about same as the upstream boundary layer thickness and suction mass flow is 10% of the flow rate in the upstream boundary layer. The final configuration of the shock reflection pattern and the wall pressure distribution approach to the non-viscous value when wall suction is applied.

  • PDF

INVESTIGATION ON CRITERION OF SHOCK-INDUCED SEPARATION IN SUPERSONIC FLOWS

  • Heuy-Dong KIM
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1995년도 제5회 학술강연회논문집
    • /
    • pp.69-83
    • /
    • 1995
  • A great number of experimental data indicating shock-induced separation(SIS) in internal or external supersonic flows were reviewed to make clear the mechanism of SIS and to present the criterion of turbulent boundary layer separation. The interesting conclusions were obtained for the considerably wide range of flow geometries that the incipient separation is almost independent of the flow geometries, and that it is relatively unaffected by changes in gas specific heat, and boundary layer Reynolds number, Furthermore, the pressure rise necessary to separate boundary layer in external flows was found to be applicable to SIS in overexpanded propulsion nozzles. This is due to the fact that the SIS phenomenon caused by the interaction between shock waves and turbulent boundary layers is processed through a supersonic deceleration. This is, the SIS in almost all of interacting flow fields is governed by the concept of free interaction, and criterion of SIS is only a Function of upstream Mach number.

  • PDF

언덕지형을 지나는 유동의 수치해석적 연구 (Numerical Study on the Wind Flow Over Hilly Terrain)

  • 김현구;이정묵;경남호
    • 한국대기환경학회지
    • /
    • 제13권1호
    • /
    • pp.65-77
    • /
    • 1997
  • A theoretical and numerical investigation on the boundary-layer flow over a two- or three-dimensional hill is presented. The numerical model is based on the finite volume method with boundary-fitted coordinates. The k-$\varepsilon$ turbulence model with modified wall function and the low-Reynolds-number model are employed. The hypothesis of Reynolds number independency for the atmospheric boundary-layer flow over aerodynamically rough terrain is confirmed by the numerical simulation. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the wind-tunnel experiments on the flow over a hill show good agreement. The linear theory provides generally good prediction of speed-up characteristics for the gentle-sloped hills. The flow separation occurs in the hill slope of 0.5 and the measured reattachment points are compared with the numerical prediction. It is found that the k- $\varepsilon$ turbulence model is reasonably accurate in predicting the attached flow, while the low- Reynolds-number model is more suitable to simulate the separated flows.ows.

  • PDF

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.

축대칭 물체의 경계층 유동소음에 대한 실험적 연구 ( I ) - 축대칭 물체 전두부 및 실린더 벽면 섭동압력 - (Experimental Study on Flow Noise Generated by Axisymmetric Boundary Layer ( I ) - Wall Pressure Fluctuations on Axisymmetric Noses and on a Cylinder in an Axial Flow -)

  • 이승배;김휘중;권오섭;이상권
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.945-956
    • /
    • 2000
  • The axisymmetric bodies considered in this study have hemispherical and ellipsoidal noses. The near-field pressure fluctuations over each nose model at $Re_D=2.43{\times}10^5$ were investigated in the laminar separation region and developing turbulent boundary layers using a 1/8' pin-holed microphone sensor. The wall pressure fluctuations were also measured in an axisymmetric boundary layer on a cylinder parallel to mean flow at a momentum thickness Reynolds number of 850 and a boundary layer thickness to cylinder radius ratio of 1.88.