• Title/Summary/Keyword: boundary layer development

Search Result 222, Processing Time 0.03 seconds

Turbulence of the Coastal Atmospheric Surface Layer and Structure of the Coastal Atmospheric Boundary Layer (해안 대기 표층의 난류와 해안 대기 경계층의 구조)

  • Kwon, Byung-Hyuk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.3
    • /
    • pp.404-412
    • /
    • 2005
  • The surface energy budget depends on many factors, such as the type of surface, the soil moisture and the vegetation canopy, the geographical location, daily, monthly and seasonal variations, and weather conditions. In the coastal region, the surface is not homogeneous at various scales for instance water, sand, mud, tall grass, and crops. The energy balance over the vegetation canopy was analyzed with the optical energy balance measuring system. The latent heat flux was more intensive than the sensible heat flux. The sensible heat flux was very small in summer due to the canopy effect and higher in spring and autumn. In summer the development of the atmospheric boundary depended on rather the vertical shear of wind than the sensible heat flux.

Boundary Layer Correction of Hypersonic Wind-tunnel Nozzle Designed by the Methods of Characteristics (특성곡선 해법 설계 극초음속 노즐의 경계층 보정)

  • Kim, So-Yeon;Kim, Sung Don;Jeung, In-Seuck;Lee, Jong-Kuk;Choi, Jeong-Yol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1028-1036
    • /
    • 2014
  • A design procedure is established for hypersonic nozzles by using MOC(Method of Characteristics) and CFD. The inviscid nozzle contour is designed by MOC, then BLC(Boundary Layer Correction) is made by evaluating the boundary layer thickness from viscous CFD analysis. By comparing various definitions of the boundary layer thicknesses, it seems that the boundary layer thickness of 95% speed of the maximum value at the cross section satisfies best the design Mach number. Design procedure is as follow; MOC design, grid generation, inviscid analysis, viscous analysis, BLC and viscous analysis for confirmation and post-processing. All procedures are made automatically by using the batch processing.

Numerical Analysis on Effects of the Boundary Layer Fence Equipped on the Hub of Rotor in the First Stage Axial Flow Gas Turbine (1단 축류 가스터빈내 동익의 허브면에 장착된 경계층 펜스의 효과에 대한 수치 해석적 연구)

  • Yoon, Deok-Kyu;Kim, Jae-Choon;Kim, Dae-Hyun;Lee, Won-Suk;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.8-16
    • /
    • 2009
  • The objective of this study is to investigate the three-dimensional turbulence flow characteristics of a rotor passage of an one-stage axial flow gas turbine and to investigate the effects of a boundary layer fence installed on the hub endwall of the rotor passage. Secondary flows occurring within the rotor passage (e.g. horseshoe vortex, passage vortex, and cross flow) cause secondary loss and reduce turbine efficiency. To control these secondary flows, a boundary layer fence measuring half the height of the thickness of the inlet boundary layer was installed on the hub endwall of the rotor passage. This study was performed numerically. The results show that the wake and secondary flows generated by the stator reduced the rotor load to constrain the development of cross flow and secondary flow reinforced by the rotor passage. In addition, the secondary vortices occurring within the rotor passage were reduced by the rotation of the rotor. Although, the boundary layer fence induced additional vortices, giving rise to an additional loss of turbine, its presence was shown to reduce the total pressure loss when compared to effects of the case without fence regardless of the relative position of blades by enervating secondary vortices occurred within the rotor passage.

A Case Study on the Heat budget of the Marine Atmosphere Boundary Layer due to inflow of cloud on observation at Ulleungdo (울릉도에서 구름 유입시 관측한 해양대기경계층의 열수지에 관한 사례연구)

  • Kim, Hee-Jong;Yoon, Ill-Hee;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.629-636
    • /
    • 2004
  • In order to study developments of the marine atmosphere boundary layer in cloud incoming, important parameters like heat advection, surface layer heat flux, and radiation energy were estimated using the rawinsonde, AWS data, satellite images, and buoy data which was installed at the East Sea. We explained the variation and the development of mixed layer in terms of surface layer heat flux and long wave radiation under the cloudy sky. The heat flux was obtained by means of the bulk method. Conservation of heat was analysed by heat budget equation, which was consist of buoy data in the East sea, and sounding data at Ulleungdo and at Pohang. During the inflow of cloud, radiative cooling at the surface after was suppressed and long wave radiation from cloud played a role of warming. The surface layer temperature was also remained warm by influence of warm advection from south-easterly direction. The air temperature in night was increased, as a result, mixed layer was not destroyed and The nocturnal boundary layer was composed of the mixed layer and the residual layer.

An Experimental Study on the Vertical Dispersion of Plume in Convective Boundary Layer Using a Composite Turbulence Water Tank (複合因 擾亂 水槽를 이용한 대류 경계층에서의 연직방향 plume 확산에 관한 실험적 연구)

  • 박옥현;서석진;이상훈
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.639-647
    • /
    • 1999
  • Experimental methods of plume dispersion in convective boundary layer using a composite turbulence water tank have been established through (ⅰ) manufacturing of water tank system, (ⅱ) providing of tracer whose volatility is relatively low, (ⅲ) development of software for image processing of dispersed particles in fluid, and (ⅳ) application of appropriate similarity law. Using these methods, the vertical dispersion coefficient $$\sigma$_2$ at long distances on mesoscale and the centerline height $Z_c$ of plumes have been measured. Measurement of $$\sigma$_2$ have been validated through comparison with CONDORS field experiments, and analysed with respect to the intensity of heat flux and mechanical turbulence as well as plume release height. Downwind distance where plume center height approaches to final level has also been analysed in respect of these three parameters.

  • PDF

Analysis of Laminar Flow and Heat Transfer in Asymmetric, Sudden Expansion Channel (비대칭급확대채널의 층류유동 및 열전달 해석)

  • Won, Seung-Ho;Maeng, Joo-Sung;Son, Byung-Jin
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 1984
  • This analysis of numerical procedure is prediction of laminar flow and heat transfer at two dimension and steady flow in asymmetric sudden expansion channel. At former study, to analyse the flows with separation, the full Navier-Stokes equation is used, but there are many difficulties to analyse, and although significant progress has been made in the development of efficient computational methods for the Navier-Stokes equations, very large computation times are still required. In case of reward-facing flow, boundary-layer equation is used instead of full Navier-Stokes equation to analyse velocity fields, and result of this numerical analysis is good agreement with the given experimental study. In this case, since the computer time required for the boundary-layer calculation is an order of magnitude less than required for the solution of the full Navier-Stokes equation, this boundary-layer model provides a good approximate solution.

  • PDF

Boundary Layer Ozone Transport from Eastern China to Southern Japan: Pollution Episodes Observed during Monsoon Onset in 2004

  • Pochanart, Pakpong;Wang, Zifa;Akimoto, Hajime
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.48-56
    • /
    • 2015
  • The trajectory analysis of boundary layer ozone data at four regional sites in the East Asian outflow regions in Japan was carried out together with boundary layer ozone data observed at Mt. Tai and Mt. Huang in the source region of central eastern China during the monsoon onset in May-June 2003 and 2004. At all sites, the influences of anthropogenic emissions from East Asia have been found. During May and June 2004, the evidences of direct pollution transport from central eastern China to Hedo, an outflow site in Okinawa Island were observed. Ozone mixing ratios associated with air masses from central eastern China averaged 45 ppb while those associated with clean air masses from the Pacific were only 14 ppb, which resulted in averaged 31 ppb increase of ozone mixing ratios during the pollution episodes from central eastern China at Cape Hedo. Using transport time analysis and averaging all ozone episodes transported from central eastern China, the ozone dilution rate of 5.4 ppb per day was roughly estimated during air masses transported from source to outflow regions at Hedo. In the regions nearby Japanese mainland, however ozone increases by long-range transports were more related to both domestic and East Asian sources as a whole.

Two Layer Modelling with Applications to Exchange Flow and Internal Tide (이층류 모델링의 교환류와 내부조석파 연구에의 적용)

  • Kang, Sok-Kuh;Abbott, Michael-B.;Heung, Jae-Lie;Yum, Ki-Dai
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.9-23
    • /
    • 1997
  • A numerical study of a two-layer, stratified flow is investigated, using the implicit finite difference method in one dimension. The results of computational method have been tested and, in case of lock exchange flow, compared with the results of experimental data. The results of model experiments with various interfacial, bottom friction coefficients along with various time weighting factor of numerical scheme and dissipative interface are shown and discussed. Two-layer model experiment has been also carried out to investigate the generation and propagation characteristics of internal tidal wave over the steep bottom topography under stratified condition. The internal wave seems to well radiate through the downstream boundary under the experiments adopting radiation conditions both at two layers and only at upper layer, confirming the applicability of radiational boundary condition in stratified flows. It is also shown that the internal wave through the downstream boundary propagates more actively with increasing thickness of lower layer in the downstream. This implies that the potential tidal energy in the interface will depend upon the thickness of lower layer for the constant thickness of upper layer.

  • PDF

Development of internal inflow/outflow steady mean flow boundary condition using Perfectly Matched Layer for the prediction of turbulence-cascade interaction noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer 을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.521-526
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study(1) showed that Perfectly Matched Layer (PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

  • PDF

Development of Internal Inflow/outflow Steady Mean Flow Boundary Condition Using Perfectly Matched Layer for the Prediction of Turbulence-cascade Interaction Noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.685-691
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study showed that perfectly matched layer(PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.