• Title/Summary/Keyword: boundary layer development

Search Result 222, Processing Time 0.03 seconds

A Comparative Study of the Atmospheric Boundary Layer Type in the Local Data Assimilation and Prediction System using the Data of Boseong Standard Weather Observatory (보성 표준기상관측소자료를 활용한 국지예보모델 대기경계층 유형 비교 연구)

  • Hwang, Sung Eun;Kim, Byeong-Taek;Lee, Young Tae;Shin, Seung Sook;Kim, Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.504-513
    • /
    • 2021
  • Different physical processes, according to the atmospheric boundary layer types, were used in the Local Data Assimilation and Prediction System (LDAPS) of the Unified Model (UM) used by the Korea Meteorological Administration (KMA). Therefore, it is important to verify the atmospheric boundary layer types in the numerical model to improve the accuracy of the models performance. In this study, the atmospheric boundary layer types were verified using observational data. To classify the atmospheric boundary layer types, summer intensive observation data from radiosonde, flux observation instruments, Doppler wind Light Detection and Ranging(LIDAR) and ceilometer were used. A total number of 201 observation data points were analyzed over the course 61 days from June 18 to August 17, 2019. The most frequent types of differences between LDAPS and observed data were type 1 in LDAPS and type 2 in observed(each 53 times). And type 3 difference was observed in LDAPS and type 5 and 6 were observed 24 and 15 times, respectively. It was because of the simulation performance of the Cloud Physics such as that associated with the simulation of decoupled stratocumulus and cumulus cloud. Therefore, to improve the numerical model, cloud physics aspects should be considered in the atmospheric boundary layer type classification.

A Prediction Method for Three-Dimensional Boundary Layers on Ship Forms at Zero Froude Number

  • Shin-Hyoung,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.2
    • /
    • pp.7-20
    • /
    • 1981
  • A method to predict the three-dimensional turbulent boundary layer on ship forms is introduced. The present differential method is in the scope of thin boundary layer theory and adopting the eddy-viscosity turbulence model. Two different numerical schemes are taken in this paper to handle the sign-changing cross-flows. The method is applied to predict the boundary layer development on real ship forms; SSPA Model 720($C_B$=0.675) and HSVA Tanker Model($C_B$=0.85). The results are qualitatively in good agreements with measurements except at the very stern. Therefore the method seems to be very promising if further developments are accomplished to handle the thick stern boundary layer effectively.

  • PDF

The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer (소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석)

  • Shin, Ku-Kyun;Seo, Youngsoo;Kang, Myengwhan;Jeon, Jaejin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, materials of acoustic window and characteristics of damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result, these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction

Error Reduction of Sliding Mode Control Using Sigmoid-Type Nonlinear Interpolation in the Boundary Layer

  • Kim, Yoo-K.;Jeon, Gi-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1810-1815
    • /
    • 2003
  • Sliding mode control with nonlinear interpolation in the boundary layer is proposed. A modified sigmoid function is used for nonlinear interpolation in the boundary layer and its parameter is tuned by a fuzzy logic controller. The fuzzy logic controller that takes the distance between the system state and the sliding surface as its input guides the choice of parameter of the modified sigmoid function and the parameter is on-line tuned. Owing to the decreased thickness, the proposed method has better tracking performance than the conventional linear interpolation method. To demonstrate its performance, the proposed control algorithm is applied to a simple nonlinear system model.

  • PDF

Experimental Study of Wall Pressure Fluctuations in the Regions of Flow Transition (천이 경계층 유동의 벽면 변동 압력에 관한 실험적 연구)

  • 홍진숙;전재진;김상윤;신구균
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2002
  • It has been long suspected that the transition region may give rise to local pressure fluctuations and radiated sound that are different from those created by the fully-developed turbulent boundary layer at equivalent Reynolds number. Experimental investigation described in this paper concerns the characteristics of pressure fluctuations at the transition. Flush-mounted microphones and hot wires are used to measure the pressure fluctuations and local flow velocities within the boundary layer in the low noise wind tunnel. From this experiment we could observe the spatial and temporal development process of T-S wave using Wigner-Ville method and find the relations between the characteristic frequency of T-S wave and free stream velocity and the boundary layer thickness based on nondimensional pressure spectra scaled on outer variables.

The effects of tripping structure on the development of turbulent boundary layer subjected to adverse pressure gradient (역압력 구배가 존재하는 난류 경계층의 발달에 트리핑 구조물이 미치는 영향에 관한 연구)

  • 임태현;김대성;윤순현
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.36-44
    • /
    • 2001
  • The effects of various tripping structures on turbulent boundary layer subjected to adverse pressure gradient were examined. The profiles are compared to zero pressure gradient and adverse pressure gradient. The increases of tripping structures of height, k are affects almost flow parameter included velocity fluctuation, skin friction coefficient and turbulent boundary thickness.

  • PDF

Influence of Boundary Layer Behavior on the Near-Wake of an NACA 0012 Airfoil (NACA 0012 에어포일의 경계층 거동이 근접 후류에 미치는 영향)

  • Yang, Jae-Hun;Kim, Dong-Ha;Chang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.24-30
    • /
    • 2006
  • An experimental study was carried out in order to investigate the influence of boundary layer behavior on the near-wake at low Reynolds numbers. An X-type hot-film probe(55R51) was used to measure the near-wake of an NACA 0012 airfoil at static angles of attack ${\alpha}=0^{\circ}$, $3^{\circ}$, and $6^{\circ}$, and the Reynolds numbers Re=2.3${\times}10^4$, 3.3${\times}10^4$, and 4.8${\times}10^4$. The results of the study show that the characteristics of the boundary layer on the airfoil surface have a close relationship with the mean velocity and turbulence intensity profiles of a near-wake. Therefore, the development of the boundary layer, the position of the separation point, and the existence and non-existence of reattachment on the airfoil surface were represented by the differences in mean velocity and turbulence intensity profiles of the near-wake.

  • PDF

Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path (굽어진 유로 내부의 충격파-경계층 상호작용 수치연구)

  • Kim, Jae-Eun;Jeong, Seung-Min;Choi, Jeong-Yeol;Hwang, Yoojun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.36-44
    • /
    • 2021
  • Numerical analysis was performed on the shock wave-boundary layer interaction generated in the internal flow path of the curved interstage of the scramjet engine flight test vehicle. For numerical analysis, the turbulence model k-ω SST was used in the compressibility Raynolds Averaged Navier Stokes(RANS) equation. Representatively, the separation bubbles on the upper wall of the nozzle, the interaction between the concave shock wave and the boundary layer, and the shock wave-shock wave interaction at the edge were captured. The analysis result visualizes the shock wave-boundary layer interaction of the curved internal flow path to enhance understanding and suggest design considerations.

Towed Underwater LDV Measurement of the Interaction of a Wire-Type Stimulator and the Boundary Layer on a Flat Plate (예인수조 LDV를 이용한 평판 경계층과 와이어 타입 난류촉진장치의 상호작용에 관한 연구)

  • Park, Jongyeol;Seo, Jeonghwa;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.243-252
    • /
    • 2021
  • The present study aims to investigate the interaction of a wire-type turbulence stimulator and the laminar boundary layer on a flat plate by flow field measurement. For the towing tank tests, a one-dimensional Laser Doppler Velocimetry (LDV) attached on a two-axis traverse was used to measure the streamwise velocity component of the boundary layer flow in zero pressure gradient, disturbed by a turbulence stimulator. The wire diameter was 0.5 and 1.0 mm according to the recommended procedures and guidelines suggested by the International Towing Tank Conference. Turbulence development by the stimulator was identified by the skin friction coefficient, mean and Root Mean Square (RMS) of the streamwise velocity. The laminar boundary layer with the absence of the wire-type stimulator was similar to the Blasius solution and previous experimental results. By the stimulator, the mean and RMS of the streamwise velocity were increased near the wall, showing typical features of the fully developed turbulent boundary layer. The critical Reynolds number was reduced from 2.7×105 to 1.0×105 by the disturbances caused by the wire. As the wire diameter and the roughness Reynolds number (Rek) increased, the disturbances by the stimulator increased RMS of the streamwise velocity than turbulent boundary layer.

Development of Thermocouple Sensor for Thermal Boundary Layer Measurement (온도 경계층 측정용 열전대 센서 개발)

  • Seo, Jongbeom;Han, S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.983-990
    • /
    • 2014
  • This research focused on designing an appropriate thermocouple sensor for a thermal boundary layer with a large temperature gradient. It was designed to minimize the conduction error from a constant temperature wall in a boundary layer. A $79.9-{\mu}m$ thermocouple was chosen, and a five-axis device jig was developed to fabricate a butt-welded thermocouple, which is different from arc-welded junction thermocouples. This was used to minimize the size of the thermocouple junction. In addition to fabricating butt-welded thermocouples, a thorough calibration was conducted to decrease the internal error of a multimeter to ensure that the data from the butt-welded and regular thermocouples were almost the same. Based on this method, a butt-welded thermocouple with a small junction was found to be suitable for measuring the temperature in a thermal boundary layer with very large thermal gradients. Using this thermal boundary layer probe, the thermal boundary layers in a turbine cascade were measured, and the Nusselt numbers were obtained for the turbine endwall.