• Title/Summary/Keyword: bottom slope

Search Result 299, Processing Time 0.025 seconds

FEM Numerical Formulation for Debris Flow (토석류 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.55-65
    • /
    • 2014
  • Recent researches on debris flow is focused on understanding its movement mechanism and building a numerical simulator to predict its behavior. However, previous simulators emulating fluid-like debris flow have limitations in numerical stability, geometric modeling and application of various boundary conditions. In this study, depth integration is applied to continuity equation and force equilibrium for debris flow. Thickness of sediment, and average velocities in x and y flow direction are chosen for main variables in the analysis, which improve numerical stability in the area with zero thickness. Petrov-Galerkin formulation uses a discontinuous test function of the weighted matrix from DG scheme. Presented mechanical constitutive model combines fluid and granular behaviors for debris flow. Effects on slope angle, inducing debris height, and bottom friction resistance are investigated for a simple slope. Numerical results also show the effect of embankment at the bottom of the slope. Developed numerical simulator can assess various risk factors for the expected area of debris flow, and facilitate embankment design in order to minimize damage.

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Seung;Jeon, Min-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.619-627
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. We also considered the increase of water depth at the entrance channel by dredging work up to 15 meters depth in order to see the dredging effect. Among several model analyses, the nonlinear and breaking wave conditions are showed the most applicable results. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Sung;Jeon, Min-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.217-225
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

  • PDF

Derivation of Coherent Reflection Coefficient at Mid and Low Frequency for a Rough Surface (불규칙 경계면에 대한 중저주파수 간섭 반사 계수 유도)

  • Chu, Young-Min;Seong, Woo-Jae;Byun, Sung-Hoon;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.174-186
    • /
    • 2009
  • When we apply a propagation model to the ocean with boundaries, we can calculate reflected wave using reflection coefficient suggested by Rayleigh assuming the boundaries are flat. But boundaries in ocean such as sea surface and sea bottom have an irregular rough surface. To calculate the reflection loss for an irregular boundary, it is needed to compute the coherent reflection coefficient based on an experimental formula or scattering theory. In this article, we derive the coherent reflection coefficients for a fluid-fluid interface using perturbation theory, Kirchhoff approximation and small-slope approximation respectively. Based on each formula, we can calculate coherent reflection coefficients for a rough sea surface or sea bottom, and then compare them to the Rayleigh reflection coefficient to analyze the reflection loss for a random rough surface. In general, the coherent reflection coefficient based on small-slope approximation has a wide valid region. Comparing it with the coherent reflection coefficients derived from the Kirchhoff approximation and perturbation theory, we discuss a valid region of them.

Observation of Semi-diurnal Internal Tides and Near-inertial Waves at the Shelf Break of the East China Sea

  • Park, Jae-Hun;Lie, Heung-Jae;Guo, Binghuo
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.409-419
    • /
    • 2011
  • Semi-diurnal internal tides and near-inertial waves are investigated using moored current meter measurements at four sites along the shelf break of the East China Sea during August 1987 and May-June 1988. Each mooring is equipped with four current meters spanning from near surface to near bottom. Spectral analyses of all current data reveal dominant spectra at the semi-diurnal frequency band, where the upper and lower current measurements show out-of-phase relationship between them with significant coherences. These are consistent with typical characteristics of the first-mode semi-diurnal internal tide. Strong intensification of the near-bottom baroclinic currents is observed only at one site, where the ratio of the bottom slope to the slope of the internal-wave characteristics at the semi-diurnal frequency is close to unity. An energetic near-inertial wave event is observed during the first half of May-June 1988 observation at two mooring sites. Rotary spectra reveal that the most dominant signal is clockwise rotating motion at the near-inertial frequency band. Upward phase and downward energy propagations, shown in time-depth contour plots of near-inertial bandpass filtered currents, are confirmed by cross correlations between the upper- and lower-layer current measurements. The upward-propagating phase speed is estimated to be about 0.13 cm $s^{-1}$ at both sites. Significant coherences and in-phase relationships of near-inertial currents at the same or similar depths between the two sites are observed in spite of their long distance of about 110 km.

Hydraulic and Numerical Tests on Wave Overtopping for Vertical Seawall with Relatively Shallow and Steep Sloped Water Depth (상대적으로 수심이 낮고 급한 전면 경사를 갖는 직립식 호안에서의 월파량 산정에 관한 수리 및 수치 실험)

  • Young-Taek, Kim;Hyukjin, Choi;Hwangki, Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.258-265
    • /
    • 2022
  • In Korea, the hydraulic model tests for measuring the wave overtopping have been almost conducted with no bottom slope or single slope condition in Korea. In this study, the bottom seabed for the coastal road area was fabricated at the wave flume and the wave overtopping was measured. The overtopping rate was also measured with the numerical modelling by OLAFoam. The measuring data were compared with EurOtop manual. It could be known the the influence of the foreslope in front of the vertical wall was significant and the these effects should be concerned when designing the coastal structures. And also it could be known that OLAFoam could be used to predict the wave overtopping rate for the complex bottom topography.

Mineral Distribution of Soil at Different Depth in a Fairway Slope (훼어웨이 경사의 토양 깊이별 무기성분 분포)

  • Choi, B. J.;Ju, Y. H.;Park, H.
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 1997
  • Soil chemical properties were investigated to elucidate vertical movement of mineral nutrients in a fairway slope of 27 year-old golf course. Soil samples were taken at every 10cm depth to 4Ocm on 4 sites 20m apart each along two parallel lines 60m apart on the slope(15˚) in August. Accord-ing to the similarity of vertical distribution pattern they could be classified into 6 distinctive groups(magnesium, nitrate, phosphorus, ammonium, manganese and copper) and the slope tended to affect the vertical movement of minerals. The contents of Ca and Mg increased with depth while NO$_3$-N and Zn decreased and correlated positively. Soil pH showed significant positive correlation with depth, Ca and Mg. Phosphorus content was highest in 10~20cm depth and decreased resulting in relatively high content in 30~40cm depth of the bottom site of slope. Iron distribution pattern was similar to phosphorus. Potassium and $NH_4$showed various(irregular) patterns. Mn was highest in the deep layer at the lower sites of slope but it was reverse at the upper sites and negatively correlated with Fe. Cu content incresed with depth and heighest in 20~30cm depth. Electroconductivity showed significant positive correlation with $NO_3$-N. Magnesium, cal-cium and copper seem to be prone to defficiency due to fast leaching, and nitrate and phosphorus prone to excess problem. Preventive measures on acidification of surface soil should be taken.

  • PDF

Case Study on Location of Possible Tension Crack in Rock Slope (암반 비탈면의 인장균열 위치 선정에 관한 사례 연구)

  • Jeon, Byung-Gon;Kim, Jiseong;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.5-17
    • /
    • 2021
  • This study aims to investigate the causes and countermeasures for the occurrence of tension cracks in the slope of the rock mass of heavy equipment for road construction. Electric resistivity survey was performed to investigate the expandable tensile crack range. As a result of examining the distribution of soft zones in the rock mass, a low specific resistance zone was found at the bottom of the access road where tensile cracks occurred. It was confirmed that a low resistivity zone was distributed near the top of the excavation slope. Therefore, reinforcements was performed by determining the location of the possible tensile crack as the top of the excavation slope. Two rows of reinforced piles and anchors were proposed as a reinforcement method, and the slope stability analysis showed that the allowable safety factor was satisfied after reinforcements.

Injection of a Denser Fluid into a Rotating Cylindrical Container Filled with Homogeneous Lighter Fluid (균질의 회전유체에 고밀도유체 주입실험)

  • 나정열;황병준
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.355-364
    • /
    • 1995
  • A heavy fluid is injected to a rotating cylindrical container of flat or inclined bottom filled with homogeneous lighter fluid. Continuous flow-in and spreading patterns over the bottom of the container are observed and at the same time upper-layer motions induced by the movement of the heavy fluid are traced by thymol blue solution. Regardless of bottom geometry, the injected denser fluid is deflected toward "western wall" and continuous its path along the boundary with radial spreading which occurs in the bottom boundary layer to make a quite asymmetric flow. When the bottom contains a slope(${\beta}$-plane), increased pressure gradient causes the fluid move faster to produce a stronger Coriolis force. This makes the width of the flow narrower than that of f-plane. But, when the denser flow reaches the southern part of the container, a local-depth of denser fluid increases (much greater than the Ekman-layer depth) such that the spreading velocity along the wall is reduced and the interfacial slope increases to make the upper-layer adjust geographically to have oppositely directed upper-layer motion along the interfacial boundary. The role of the denser fluid in terms of vorticity generation in the upper-layer is such that it produces local topographic effect over the western half of the container and also induces vortex-tube stretching which is especially dominant in the f-plane.

  • PDF

Comparison of an Analytic Solution of Wind-driven Current and all (x-$\sigma$) Numerical Model (취송류의 해석위와 (x-$\sigma$) 수치모형과의 비교)

  • 이종찬;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.208-218
    • /
    • 1992
  • Analytic solutions for the gradient of surface elevation and vertical profiles of velocity driven by the wind stress in the one-dimensional rectangular basin were obtained under the assumption of steady-state. The approach treats the bottom frictional stress $\tau$$_{b}$ as known and includes vertically varying eddy viscosity $textsc{k}$$_{M}$, which is constant, linear and quadratic of water depth. When the $\tau$$_{b}$ is param-terized with surface stress, depth averaged velocity and bottom velocity, the result shows the relation of the no-slip bottom velocity condition and the bottom frictional stress $\tau$$_{b}$. The results of a mode splitted, (x-$\sigma$) coordinate, numerical model were compared with the derived analytic solutions. The comparison was made for the case such that $textsc{k}$$_{M}$ is the constant, linear and quadratic function of water depth. In the case of constant $textsc{k}$$_{M}$, the gradient of surface elevation and vertical profiles of velocity are discussed for a uniform depth, a mild slope and a relatively steep slope. When $textsc{k}$$_{M}$ is a linear and quadratic function of water depth, the vertical structures of velocities are discussed for various $\tau$$_{b}$. The result of the comparison shows that the vertical structure of velocities depends not only on the value of $textsc{k}$$_{M}$ but also on the profile of $textsc{k}$$_{M}$ and bottom stress $\tau$$_{b}$. Model results were in a good agreement with the analytic solutions considered in this study.his study.y.his study.

  • PDF