• Title/Summary/Keyword: bottom sediment

Search Result 451, Processing Time 0.023 seconds

Mineral Compositions and Textural Characters of the Bottom Sandy Sediments off Taean Peninsula, West Sea of Korea (한반도 서해 중부 태안반도 연근해역 사질퇴적물의 광물성분과 조직특성)

  • 박용안;최진용;임동일;황남순
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.99-106
    • /
    • 1999
  • The surfacial bottom sediments on the nearshore to infer continental shelf off the Taean Peninsular, west coast of Korea are dominantly medium-grained clastic sands. About 60% and 20% of these clastic sands are partly iron-stained quartz and completely iron-stained quartz, respectively. Characteristically glauconite grains are abundantly found in these clastic sands. The mineral compositions of clastic sandy sediments in the study area are very similar to those of East China continental shelf sediments. Accordingly, such iron-stained quartz grains, glauconite grains and associated textural characteristics seem to indicate that those sandy sediments are relict sediments related to past condition, i.e. Quaternary low stands of sea level.

  • PDF

On The Biogeochemical Characteristics of Surface Sediments in Chinhae Bay in September 1983

  • YANG Dong Beom;HONG Jae Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.195-205
    • /
    • 1988
  • Distribution of organic materials In the surface sediments was investigated in September 1983 in Chinhae Bay System. Bottom waters containing less than 1ml/l of dissolved oxygen were found in Masan Bay, and in part of Kohyonsong Bay and Wonmunpo Bay. Organic carbon content in the surface sediments of Masan Bay was about 25mg/g and it decreased with increasing distance from the inner Masan Bay. Mean organic carbon contents in Wonmunpo Bay and Kohyonsong Bay were 25.48 and 31.39mg/g, respectively, which are higher values than those in Masan Bay where large amount of domestic and industrial wastewaters art discharged into the surface water and extensive phytoplankton occurs almost year round. Mean organic nitrogen and pheophyton contents were also the highest in Kohyonsong Bay amont eight subareas. In Masan Bay, settling of organic materials on the surface sediments seemed to be not significant because of active tidal mixing and relatively small size of particulate materials. In Kohyonsong Bay and Wonmunpo Bay large fecal pellets produced in shellfish farms could be easily settled down on the sediment because of weak current regime. DO content in the bottom waters were low in the organic material rich areas, and that suggests biodegradation of organic materials in the surface sediments could be an important oxygen consuming process during the study period of September 1983.

  • PDF

Density Composition and Feeding Guild of the Dominant Polychaetous Community in Shallow Muddy Bottom in Tomioka Bay, Amakusa, Japan

  • LEE Si-Wan;PAIK Eui-In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.6
    • /
    • pp.793-804
    • /
    • 1995
  • Polychaetous community survey in Tomioka Bay was carried out 5 times seasonally from May 1991 to March 1992 by quantitative grab sampling (0.05m2) at 11 stations. Based on the granulometric composition and environmental factors, a homogeneous soft bottom was found in St.5-10. The species of the polychaete were classified into three feeding groups using the Fauchald and Jumars' feeding guild system. According to polychaetous community composition data, deposit feeders predominate in sandy silt area where the silt-clay content is $60-69.3\%.$ These deposit feeders were subdivided into surface deposit feeders and subsurface deposit feeders by their living position and mode. Also, suspension feeding group comes as the third dominant group. Seasonal changes of each feeding group were described in terms of numerical density and biomass. Feeding layer and types of dominant species (Lumbrineris longifolia: surface deposit feeder; Praxillella pacifica: subsurface deposit feeder; Chone duneri; suspension filter feeder, etc.) were examined in the intact sediment core samples. Also, longterm density change among the three dominant species during 10 years was disussed.

  • PDF

A Study on the Stream Pollution Analysis (하천오염분석에 관한 연구)

  • 김건흥
    • Water for future
    • /
    • v.19 no.4
    • /
    • pp.321-328
    • /
    • 1986
  • Bottom sediment-river water samples were studied to determine the extent of biodegradable matter and to examine the reduction of COD, TKN and TOC by using of warburg and aerated batch reactor. Warburg studies were conducted to study the Oxygen Uptake Rates, Reaction Rate Constants and CBOD. Bacth reator studies were conducted to determine the reduction of COD, TKN and TOC. Results from the batch recator study indicate high concentration of COD in samples. Less than 10 precent of the Organic Carbon was found to be biodegradable in 48 hours of Warburg experiment. Appreciable Immediate Oxygen Demand of sediments suggests that dredging of the river bottom is likely to deplete dissolved significantly in the river water.

  • PDF

Experimental Investigation of Effects of Sediment Concentration and Bed Slope on Debris Flow Deposition in Culvert (횡단 배수로에서 토석류 퇴적에 대한 유사농도와 바닥경사 영향 실험연구)

  • Kim, Youngil;Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.467-474
    • /
    • 2011
  • Debris flow is one of the most hazardous natural processes in mountainous regions. The degradation of discharge capacity of drainage facilities due to debris flows may result in damages of properties and casualty as well as road. Understanding and accurate reproducing flow behaviour of debris flows at various conditions, such as sediment volume concentration and approaching channel and culvert slopes, are prerequisite to develop advanced design criteria for drainage facilities to prevent such damages. We carried out a series of laboratory experiments of debris flows in a rectangular channel of constant width with an abrupt change of bottom slope. The experimental flume consists of an approaching channel part with the bed slope ranging $15^{\circ}$ to $30^{\circ}$ and the test channel with slope ranging from $0^{\circ}$ to $12^{\circ}$ which mimics a typical drainage culvert. The experiments have been conducted for 22 test cases with various flow conditions of channel slopes and sediment volume concentration of debris flows to investigate those effects on the behaviour of debris flows. The results show that, according to sediment volume concentration, the depth of debris flow is approximately 50% to 150% larger than that of fresh water flow at the same flow rate. Experimental results quantitatively present that flow behaviour and deposit history of debris flows in the culvert depend on the slopes of the approaching and drainage channels and sediment volume concentration. Based on the experimental results, furthermore, a logistic model is developed to find the optimized culvert slope which prevents the debris flow from depositing in the culvert.

Effect of Bottom Sediments on Oxygen Demand of Overlying Water in Onshore of Lake (팔당호 수변부 퇴적물이 수층의 산소소모에 미치는 영향)

  • Kang, Yang-Mi;Song, Hong-Gyu
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.23-30
    • /
    • 2000
  • n situ sediment oxygen demand (SOD), which takes place with the uptake of dissolved oxygen for biological metabolism and chemical oxidation in sediments, ranged from 1.57 to $12.55\;mg\;O_2\;m^{-2}\;h^{-1}$ in onshore of Lake Paldang from April to November 1999. SOD was influenced by the amount of organics and oxygen diffusion. Comparing the oxygen demands partitioning between overlying water and sediment during initial phase, SOD accounted for $63.8{\sim}94%$ of total oxygen demand in Lake Paldang. The chemical SOD and nitrogenous oxygen demand ranged $1.2{\sim}18.3%$ and $8.3{\sim}51.7%$ of total SOD, respectively. This result indicated that SOD in Lake Paldang occurred mainly by aerobic respiration and nitrification. Although the flow velocity could increase SOD within a certain limit, the effect of sediment depth on SOD was dependent on physicochemical properties of the sediment. This study showed that SOD can represent a significant portion of the total oxygen up-take in Lake Paldang. Therefore, the assessment of SOD might be necessary for the control of water quality.

  • PDF

Gas hydrate stability field in the southwestern Ulleung Basin, East Sea (동해 울릉분지 남서부 해역에서의 가스 하이드레이트 안정영역)

  • Ryu Byong Jae;Don Sun woo;Chang Sung Hyong;Oh Jin yong
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.1-6
    • /
    • 1999
  • Natural gas hydrate, a solid compound of natural gas (mainly methane) and water in the low temperature and high pressure, is widely distributed in permafrost region and deep sea sediments. Gas hydrate stability field (GHSF), which corresponds to the conditions of a stable existence of solid gas hydrate without dissociation, depends on temperature, pressure, and composition of gas and interstitial water. Gas hydrate-saturated sediment are easily recognized by the bottom simulating reflector (BSR), a strong-amplitude sea bottom-mimic reflector in seismic profiles. It is known that BSR is associated with the basal boundary of the GHSF, The purpose of this study is to define the GHSF and its occurrence in the southwestern part of Ulleung Basin, East Sea. The hydrothermal gradient is measured using the expandable bathythermograph (XBT) and the geothermal gradient data are utilized from previous drilling results for the adjacent area. By the laboratory work using methane and NaCl $3.0 wt{\%}$ solution, it is shown that the equilibrium pressures of the gas hydrate reach to 2,920.2 kPa at 274.15 K and to 18,090 kPa at 289.95 K for the study area. Consequently, it is interpreted that the lower boundary of the GHSF is about 210 m beneath 400-m-deep sea bottom and about 480 m beneath 1,100-m-deep sea bottom. The resultant boundary is well matched with the depth of the BSR obtained from the seismic data analysis for the study area.

  • PDF

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Surf-Zone Using LES and Dynamic Smagorinsky Turbulence Model (LES와 Dynamic Smagorinsky 난류모형을 이용한 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-84
    • /
    • 2020
  • Natural shoreline repeats its re-treatment and advance in response to the endlessly varying sea-conditions, and once severely eroded under stormy weather conditions, natural beaches are gradually recovered via a boundary layer streaming when swells are prevailing after storms cease. Our understanding of the boundary layer streaming over surf-zone often falls short despite its great engineering value, and here it should be noted that the most sediments available along the shore are supplied over the surf-zone. In this rationale, numerical simulation was implemented to investigate the hydraulic characteristics of boundary layer streaming over the surf zone in this study. In doing so, comprehensive numerical models made of Spatially filtered Navier-Stokes Eq., LES (Large Eddy Simulation), Dynamic Smagorinsky turbulence closure were used, and the effects of turbulence closure such as Dynamic Smagorinsky in LES and k-ε on the numerically simulated flow field were also investigated. Numerical results show that due to the intrinsic limits of k-ε turbulence model, numerically simulated flow velocity near the bottom based on k-ε model and wall function are over-predicted than the one using Dynamic Smagorinsky in LES. It is also shown that flow velocities near the bottom are faster than the one above the bottom which are relatively free from the presence of the bottom, complying the typical boundary layer streaming by Longuet-Higgins (1957), the spatial scope where boundary layer streaming are occurring is extended well into the surf zone as incoming waves are getting longer. These tendencies are plausible considering that it is the bottom friction that triggers a boundary layer streaming, and longer waves start to feel the bottom much faster than shorter waves.

Patterns in Benthic Polychaete Community and Benthic Health Assessment at Longline and Bottom Culture Shellfish Farms in Gangjin Bay, Namhae, Korea (남해 강진만 수하식 및 살포식 패류양식장의 다모류군집구조 양상과 저서생태계 건강도 평가)

  • Sunyoung Kim;Sang-Pil Yoon;Sohyun Park;Rae Hong Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • This study was conducted to investigate the changes in the structure of benthic communities resulting from aquaculture activities and to assess the benthic health status of surface sediment in Gangjin Bay, a region known for concentrated shellfish aquaculture on the southern coast of Korea. Survey stations were divided into longline culture, bottom culture, and non-cultivation areas. The spatiotemporal distribution of physiochemical factors such as the grain size, water temperature, salinity, and total organic carbon in Gangjin Bay showed no significant differences between sampling stations. However, the species number, density, and diversity were relatively lower at the sampling stations in the bottom culture areas than at the other stations throughout the entire survey period. Cluster analysis and principal coordinates analysis also clearly distinguished the benthic communities in the bottom culture areas from those in the other sampling areas. At the sampling stations in the longline culture and non-cultivation areas, Scolectoma longifolia and Sigambra tentaculata, which are indicator species of organically enriched areas, appeared as dominant species. However, excluding some stations influenced by physical factors such as the water depth and current speed, the occupancy rate was not high. The health assessment results, conducted using the fisheries environment assessment method, revealed good conditions with Grades 1 and 2 across the entire area. However, an examination of the spatiotemporal changes in benthic communities and the benthic health index indicated that the benthic environment in the bottom culture areas was affected by physical disturbances.

Environmental Evaluation of Fish Aquafarm off Baegyado in Yeosu by Multivariate Analysis (다변량분석에 의한 여수 백야도 어류양식장의 해양 환경분석)

  • LEE, Chang-Hyeok;KANG, Man-Gu;LIM, Su-Yeon;KIM, Jae-Hyun;SHIN, Jong-Ahm
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.785-798
    • /
    • 2017
  • This study was conducted to evaluated the surface(10 variables) and bottom(10 variables) water quality, and sediment(3 variables) in the cage fish farm off Baegyado in Gamak Bay using a multivariate analysis from January 2013 to November 2014. Generally, the environmental data did not show a certain tendency by months during two years investigated. The pairwise simple correlation matrices among variables were also shown. The first four principal components of the surface water in 2013 explain 93% of the total sample variance; the first principal component($z_1$) showed the freshwater inflow and/or precipitation, $z_2$, $z_3$ and $z_4$ related to freshwater inflow and/or precipitation, organic matters and eutrophy, respectively; the first four principal components of the bottom water in 2013 explain 93% of the total sample variance; the $z_1$, $z_2$ and $z_4$ related to freshwater inflow and/or precipitation, and $z_3$ water temperature. In 2014, at the surface water the first three principal components explain 87%; the $z_1$, $z_2$ and $z_3$ related to water temperature, eutrophy and freshwater inflow and/or precipitation, respectively; at the bottom water the first three principal components explain 93%; $z_1$, $z_2$ and $z_3$ related to water temperature, freshwater inflow and/or precipitation and eutrophy. Half of the principal components related to freshwater inflow and/or precipitation.