• Title/Summary/Keyword: bottom cold water of Yellow Sea

Search Result 56, Processing Time 0.029 seconds

A Note on Water Masses and General Circulation in the Yellow Sea (Hwanghae) (黃海水 와 循環에 관한 考察)

  • Lie, Heung-Jae
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.187-194
    • /
    • 1984
  • Water masses and circulation in the yellow Sea (Hwanghae) were briefly reviewed and synthesized. Water masses were classified into four types: Hwanghae Cold Water, Hwanghae Warm Current Water, Coastal Waters and Changjiang River Diluted Water. The Hwanghae Cold Water can be defined to have a salinity of 32.0∼33.0% and a temperature below 10$^{\circ}C$, based on long-term hydrographic data and recent CTD casts (KORI, 1984). Concerning circulation, there exists a cyclonic gyre throughout the year in the southern part. In winter, the coastal current along the Chinese coast is very strong due to northerly or northwesterly winds and the Hwanghae Warm Current becomes weak as can be expected from a surface to bottom thermohaline front west of Cheju-do. Meanwhile in summer, the Changjiang River Diluted Water flows northeastward toward Cheju-do and the coastal current in the western part is greatly reduced. The northward current during summer in the southeastern Hwanghae has been accepted to be the Hwanghae Warm Current until now, coastal waters and the Hwanghae Cold Water in the central deep area, not a continuation of the Hwanghae Warm Current.

  • PDF

Marine Environmental Characteristics on the Dinoflagellate Cysts Distribution in Surface Sediments in the Southwest Sea, Korea (한국남서해역 표층퇴적물 중의 와편모조류 시스트 분포에 영향을 미치는 해양환경요인)

  • Shin, Hyeon-Ho;Yoon, Yang-Ho;Park, Jong-Sick
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2007
  • Marine environmental characteristics on the dinoflagellate cysts distribution in surface sediment of the southwest sea of Korea were investigated from 21 stations in September 2003, and 36 stations in June, 2004. The water mass characteristics indicated that the southwest sea of Korea is characterized by various oceanographic conditions due to coastal waters of Korea and China. The Tsushima warm currents and the cold bottom water of the Yellow Sea. Mud contents and chlorophyll a concentrations were higher in central region such as, Namhaedo, Yeosu and Goheung coast than in western region such as, Wando, Haenam and Jindo coast in the South Sea of Korea. A total of 35 taxa of dinoflagellate cysts were identified representing 21 genera, 33 species, 2 unidentified species. Cyst abundance ranged from 13 to 527 cysts $g-dry^{-1}$, showing higher abundance in the coastal areas than in western region of the South Sea of Korea. From the result of the PCA analysis, the distribution of dinoflagellate cysts was not only related to the different water masses which appeared in the southwestern sea but also to physical and biological parameters such as water temperature, light, surface sediment faces and phytoplankton biomass.

The Seasonal Environmental Factors Affecting Copepod Community in the Anma Islands of Yeonggwang, Yellow Sea (황해 영광 안마 군도 해역의 요각류 출현 양상에 영향을 미치는 계절적 환경 요인)

  • Young Seok Jeong;Seok Ju Lee;Seohwi Choo;Yang-Ho Yoon;Hyeonseo Cho;Dae-Jin Kim;Ho Young Soh
    • Ocean and Polar Research
    • /
    • v.45 no.2
    • /
    • pp.43-55
    • /
    • 2023
  • This study was conducted to understand the seasonal patterns and variation of the copepod community in the Anma Islands of Yeonggwang, Yellow Sea, with a focus on seasonal surveys to assess the factors affecting their occurrence. Throughout the survey period, Acartia hongi, Paracalanus parvus s. l., and Ditrichocorycaeus affinis were dominant species, while Acartia ohtsukai, Acartia pacifica, Bestiolina coreana, Centropages abdominalis, Labidocera rotunda, Paracalanus sp., Tortanus derjugini, Tortanus forcipatus occurred differently by season and station. As a results of cluster analysis, the copepod communities were distinguished into three distinct groups: spring-winter, summer, and autumn. The results of this study showed that the occurrence patterns of copepod species can vary depending on environmental conditions (topographic, distance from the inshore, etc.), and their spatial occurrence patterns between seasons were controlled by water temperature and prey conditions. One of the physical mechanisms that can affect the distribution of zooplankton in the Yellow Sea is the behavior of the Yellow Sea Bottom Cold Water (YSBCW), which shows remarkable seasonal fluctuations. More detailed further studies are needed for clear grounds for mainly why to many Calanus sinicus in the central region of the Yellow Sea are seasonally moving to the inshore, what strategies to seasonally maintain the population, and support the possibilities of complex factors.

Inversion Phenomena of Temperature in the Southern Sea of Korea (한국 남해의 수온역전현상)

  • KIM Hee-Joon;YUG Sang-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.111-116
    • /
    • 1983
  • Temperature inversions are investigated by using the oceanographic data (1965-1979) obtained in the Southern Sea of Korea. The temperature inversions in winter occur about six times more frequently than those in sumner. In the west region of the Southern Sea, the inversions are found at any depth in winter. In the east region of the Southern Sea, however, they usually appear in surface layer in winter. Such inversion phenomena in winter can be explained by surface cooling effects associated with a net heat loss at the sea surface and a southward advection of surface cold water due to north-westerly monsoon. In summer the inversion layers are usually formed below the thermocline in the west region of the Southern Sea, and in surface layer in the east region. The former results from the mixing between the Tsushima Warm Current and the Yellow Sea Bottom Cold Water, and the latter is generated by an offshore flow of cold water near coast due to southwesterly wind.

  • PDF

A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact (태풍 에위니아 (0603) 통과 후 상층해양 변동 특성과 영향)

  • Jeong, Yeong Yun;Moon, Il-Ju;Kim, Sung-Hun
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.205-220
    • /
    • 2013
  • Upper ocean response to typhoon Ewiniar (0603) and its impact on the following typhoon Bilis (0604) are investigated using observational data and numerical experiments. Data used in this study are obtained from the Ieodo Ocean Research Station (IORS), ARGO, and satellite. Numerical simulations are conducted using 3-dimensional Princeton Ocean Model. Results show that when Ewiniar passes over the western North Pacific, unique oceanic responses are found at two places, One is in East China Sea near Taiwan and another is in the vicinity of IORS. The latter are characterized by a strong sea surface cooling (SSC), $6^{\circ}C$ and $11^{\circ}C$ in simulation and observation, under the condition of typhoon with a fast translation speed (8m $s^{-1}$) and lowering intensity (970 hPa). The record-breaking strong SSC is caused by the Yellow Sea Bottom Cold Water, which produces a strong vertical temperature gradient within a shallow depth of Yellow Sea. The former are also characterized by a strong SSC, $7.5^{\circ}C$ in simulation, with a additional cooling of $4.5^{\circ}C$ after a storm's passage mainly due to enhanced and maintained upwelling process by the resonance coupling of storm translation speed and the gravest mode internal wave phase speed. The numerical simulation reveals that the Ewiniar produced a unfavorable upper-ocean thermal condition, which eventually inhibited the intensification of the following typhoon Bilis. Statistics show that 9% of the typhoons in western North Pacific are influenced by cold wakes produced by a proceeding typhoon. These overall results demonstrate that upper ocean response to a typhoon even after the passage is also important factor to be considered for an accurate intensity prediction of a following typhoon with similar track.

Oceanographic Conditions in the Neighboring Seas of Cheju Island and the Appearance of Low Salinity Surface Water in May 2000 (2000년 5월 제주도 주변해역의 해황 및 표층 저염분수의 출현)

  • KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.2
    • /
    • pp.148-158
    • /
    • 2004
  • In the adjacent seas of Cheju Island, the oceanographic conditions show low salinity surface waters starting in May. This water flows from the southeast part of the China Coastal Water, which flows southeastward along the Great Yangtze Sand Bank until April, with the help of southeasterly winds and flows from the adjacent sea off Cheju Island. In May, the Tsushima Warm Current and the low salinity surface water fluctuate in short and long-term periods as influenced by Yellow Sea Cold Water, which flows to the bottom layer at the western entrance of Cheju Strait. Temperature and salinity fronts in the northeastern sea area of U Island are formed in the boundary area between the Tsushima Warm Current, which expands towards Cheju Island from the southeastern sea area of Cheju Island and Hows out from the eastern entrance of the strait. Seasonally, additional oceanographic conditions, such as coastal counter-currents, which flow southward, appears within limited areas in the adjacent eastern and western seas of Cheju Island.

Distribution of Nutrients in the Coastal Sea of Jeju Island (제주도 연안해수의 영양염류에 관한 연구)

  • Park Kil-Soon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.255-262
    • /
    • 1982
  • The data of 37 oceanographic stations in the coastal sea of Jeju island are compiled in terms of temperature, salinity, dissolved oxygen, silicate, nitrate and phosphate to analyge the chelnical characteristics in this region. This work was carried out during June, 1951. The concentrations of nutrients in the layer more than 50 m are generally 0.5-3 times larger than the surface layer. Each constituents in this layer are as follows: temperature ranged 11.8 to $15.4^{\circ}C$ and salinity, 33.8 to $34.8\%_{\circ}$; and also dissolved oxygen and slicate are 5.2 to 5.6ml/l and 5.6 to $9.0{\mu}g-at/l$, respectively. And nitrate and phosphate ranged 1.0 to $6.0{\mu}g-at/l$ and 0.1 to $0.5{\mu}g-at/l$, respectively. The coastal sea of Jeju island is divided into two parts in chemical view point : one is the southeastern sea of Jeju island under the influence of the Tsushima Current, md the other is the northeastern sea of Jejo island under the influence of the Yellow Sea Bottom Cold Water and the south coastal water of Korea. The north-western sea of Jeju island had relatively a cold (about $13^{\circ}C$) and low saline water (about $34\%_{\circ}$), and dissolved oxygen was higher than in the neibouring waters. It seems that in the southern area between Moseulpo and Seogwipo of Jeju island, two different Ivater masses are complicately intermixed and a tidal front is formed.

  • PDF

Transportation and Deposition of Modern Sediments in the Southern Yellow Sea

  • Shi, Xuefa;Chen, Zhihua;Cheng, Zhenbo;Cai, Deling;Bu, Wenrui;Wang, Kunshan;Wei, Jianwei;Yi, Hi-Il
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.57-71
    • /
    • 2004
  • Based on the data obtained under the China-Korea joint project (1997-2001) and historic observations, the distribution, transportation and sedimentation of sediment in the southern Yellow Sea (SYS) are discussed, and the controversial formation mechanism of muddy sediments is also explored. The sediment transport trend analysis indicates that the net transport direction of sediment in the central SYS (a fine-grained sediment deposited area) points to $123.4^{\circ}E,\;35.1^{\circ}N$, which is a possible sedimentation center in the central SYS. The sediment transport pattern is verified by the distribution of total suspended matter (TSM) concentration and ${\delta}^{13}C$ values of particulate organic carbon (POC), the latter indicates that the bottom water plays a more important role than the surface water in transporting the terrigenous material to the central deep-water area of the SYS, and the Yellow Sea circulation is an important control factor for the sediment transport pattern in the SYS. The carbon isotope signals of organic matter in sediments indicate that the Shandong subaqueous delta has high sedimentation rate and the deposited sediments originate mainly from the modern Yellow River. The terrigenous sediments in deep-water area of the SYS originate mainly from the old Yellow River and the modern Yellow River, and only a small portion originates from the modern Yangtze River. The analytical results of TSM and stable carbon isotopes are further confirmed by another independent tracer of sediment source, polycyclic aromatic hydrocarbons (PAHs). Five light mineral provinces in the SYS can be identified and they indicate inhomogeneity in sources and sedimentary environment. The modern shelf sedimentary processes in the SYS are controlled by shelf dynamic factors. The muddy depositional systems are produced in the shelf low-energy environments, which are controlled by some meso-scale cyclonic eddies (cold eddies) in the central SYS and the area southwest of the Cheju Island. On the contrary, an anticyclonic muddy depositional system (warm eddy sediment) appears in the southeast of the SYS (the area northwest of the Cheju Island). In this study, we give the cyclonic and anticyclonic eddy sedimentation patterns.

Marine Environment and the Distribution of Phytoplankton Community in the Southwestern Sea of Korea in Summer 2005 (여름 한국서남해역의 해양환경과 식물플랑크톤 군집분포)

  • Yoon, Yang-Ho;Park, Jong-Sick;Park, Yeong-Gyun;Noh, Il-Hyeon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.155-166
    • /
    • 2007
  • We carried out a study on the marine environment, such as water temperature, salinity, density and chlorophyll ${\alpha}$, and the distribution of phytoplankton community, such as species composition, dominant species and standing crops in the Southwestern Sea of Korea during early summer 2005. According to the analysis of a T-S diagram, three characteristics of water masses were identified. We classified them into Korean and Chinese coastal water, the cold water and the oceanic water. The first was characterized by high temperature and low salinity in the surface layer influenced by river run offs from China and Korea, the second by low temperature and salinity in bottom layer originated from the bottom cold water of the Yellow Sea, and the third by high temperature and high salinity influenced by Tsushima warm currents. The internal discontinuous layer among them was formed at the intermediate depth (about $10{\sim}20\;m$ layer). And the thermal front appeared in the central parts between Tsushima warm currents and Korean and Chinese coastal waters in the Southwestern Sea of Korea. Chlorophyll ${\alpha}$ concentration was high values in the Korean coastal waters and sub-surface layers. But It was low concentration in the Tsushima warm currents regions. The $Chl-{\alpha}$ maximum layers appeared in the sub-surface layer below thermocline. The phytoplankton community in the surface and stratified layers was composed of a total of 40 species belonging to 26 genera. Dominant species were 2 diatoms, Paralia sulcata, Skeletonema costatum and a dinoflagellate, Scripsiella trochoidea. Standing crops of phytoplankton in the surface layer were very low with cell density ranging from 5 to $3.8\;{\times}\;10^3\;cells/L$. Diatoms were controlled by the expanded low salinity coastal waters of the low salinity with high concentrations of nutrients. Otherwise phytoflagellates were dominant in the high temperature regions where the Tsushima warm currents approches the Southwestern Sea of Korea in early summer.

  • PDF

On the Marine Environment and Distribution of Phytoplankton Community in the Northern East China Sea in Early Summer 2004 (이른 여름 동중국해 북부해역의 해양환경과 식물플랑크톤 군집의 분포특성)

  • Yoon, Yang-Ho;Park, Jong-Sick;Soh, Ho-Young;Hwang, Doo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.100-110
    • /
    • 2005
  • We carried oui a study on the marine environment and distribution of phytoplankton community, such as chlorophyll a, species composition, dominant species and standing crops in the Northern East China Sea during early summer of 2004. According to the analysis of a T-S diagram, three characteristics of water masses were identified. We classified them into the coastal water mass, the cold water mass and the oceanic water mass. The first was characterized by the low temperature and the low salinity originated from China territory, the secondary was characterized by the low temperature, the low salinity and the high density originated from bottom cold water of Yellow Sea, and the third was done by the high temperature and salinity originated from Tsushima warm current. The internal discontinuous layer among them was farmed at the intermediate depth (about $5{\sim}30m$ layer). And the thermal front by upwelling region between the cold water mass and Tsushima warm current appeared in the central parts of the South Sea of Korea. The Phytoplankton community in the surface and stratified layers was a total of 44 species belonging to 26 genera. Dominant species were Prorocentrum triestinum, Scrippsiella trochoidea, Skeletonema costatum & Leptocylindrus mediterraneus. Standing crops of phytoplankton in the surface layer fluctuated between $0.3{\times}10^3$ cells/L and $10.8{\times}10^3$ cells/L. Diatoms appeared mainly in the Tsushima warm current regions, and flagellates occurred in the frontal zone and the low salinity regions where was the transfer areas of Chinese continental coastal waters. Chlorophyll a concentration by controlled phytoflagellate ratio in the South Sea of Korea was high values in the frontal zone and sub-surface layer. It was high concentration in the upwelling and coastal waters regions, but low concentration in the Tsushima warm current regions. The Chl-a maximum layers appeared in the thermochline depth or sub-surface layer lower than thermocline. The phytoplankton production in the South Sea of Korea was controlled by the expanded coastal waters of Chinese Continent which include a high concentrations of nutrients.

  • PDF