• Title/Summary/Keyword: both side anode

Search Result 13, Processing Time 0.018 seconds

Reduction of Methanol Crossover in a Direct Methanol Fuel Cell by Using the Pt-Coated Electrolyte Membrane

  • Jung, Eun-Mi;Rhee, Young-Woo;Peck, Dong-Hyun;Lee, Byoung-Rok;Kim, Sang-Kyung;Jung, Doo-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • A Pt-layer was deposited on the anode side of a Nafion membrane via a sputtering method in order to reduce methanol crossover in a direct methanol fuel cell (DMFC). The methanol permeation and the proton conductivity through the modified membranes were investigated. The performances of the direct methanol fuel cell were also tested using single cells with a Nafion membrane and the modified membranes. The Pt-layers on the membrane blocked both methanol crossover and proton transport through the membranes. Methanol permeability and proton conductivity decreased with an increase of the platinum layer thickness. At methanol concentration of 2 M, the DMFC employing the modified membrane with a platinum layer of 66 nm-thickness showed similar performance to that of a DMFC with a bare Nafion membrane in spite of the lower proton conductivity of the former. The maximum power density of the cell using the modified membrane with a platinum layer of 66 nm-thickness increased slightly while that of the cell with the bare membrane decreased abruptly when a methanol solution of 6M was supplied.

A Study on Hydrogen Impurity Effect in Anode of Proton Exchange Membrane Fuel Cell on Various Concentration of CO and H2S (고분자전해질 연료전지 연료극의 일산화탄소 및 황화수소 농도에 따른 불순물영향에 관한 연구)

  • LEE, EUN-KYUNG;BAEK, JAE-HOON;LEE, JUNG-WOON;LEE, SEUNG-KUK;LEE, YEON-JAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.670-676
    • /
    • 2016
  • Hydrogen town in Republic of Korea was established in 2013. Hydrogen as a byproduct produced by various processes of factories is used in hydrogen town facilities. As cell performance is affected by contaminations in fuel gas, various standards about impurities of fuel have been determined by many countries. This study shows performance degradation of single cell with impurities concentrations. Traces of carbon monoxide (CO) and hydrogen sulfide ($H_2S$)can cause considerable cell performance losses. For comparing the performances by poisoning of CO, acceleration test, I-V curve, constant current are performed. Both the CO and $H_2S$ poisoning rate are a function of their concentration. With the higher concentrations the higher poisoning rates are observed. And, it was confirmed that, oxidation behavior and side reaction generation are not affected. Under the lower $H_2S$ concentration condition, the poisoning rate is much higher than that of CO because of its different adsorption intensity. It can be possible that the result of this study can be used for enacting regulation as a baseline data.

Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC) (알칼리금속 열전기변환장치의 접합과 출력성능)

  • Suh, Min-Soo;Lee, Wook-Hyun;Woo, Sang-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.665-671
    • /
    • 2017
  • The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta"-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of $900^{\circ}C$. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.