• Title/Summary/Keyword: botanical fungicide

Search Result 3, Processing Time 0.015 seconds

Recent Trends in Studies on Botanical Fungicides in Agriculture

  • Yoon, Mi-Young;Cha, Byeongjin;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Plants are attacked by various phytopathogenic fungi. For many years, synthetic fungicides have been used to control plant diseases. Although synthetic fungicides are highly effective, their repeated use has led to problems such as environmental pollution, development of resistance, and residual toxicity. This has prompted intensive research on the development of biopesticides, including botanical fungicides. To date, relatively few botanical fungicides have been registered and commercialized. However, many scientists have reported isolation and characterization of a variety of antifungal plant derivatives. Here, we present a survey of a wide range of reported plant-derived antifungal metabolites.

Isolation and Characterization of Antifungal Metabolites from Pterocarpus santalinus against Fusarium graminearum Causing Fusarium Head Blight on Wheat (자단향으로부터 밀 붉은곰팡이병균 Fusarium graminearum에 대한 항진균활성 물질의 분리 및 특성 규명)

  • Kim, Ji-In;Ha, Areum;Park, Ae Ran;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.268-277
    • /
    • 2017
  • Fusarium head bight (FHB) is a devastating disease on major cereal crops worldwide which causes primarily by Fusarium graminearum. Synthetic fungicides are generally used in conventional agriculture to control FHB. Their prolonged usage has led to environmental issues and human health problems. This has prompted interest in developing environmentally friendly biofungicides, including botanical fungicides. In this study, a total 100 plant extracts were tested for antifungal activity against F. graminearum. The crude extract of Pterocarpus santalinus heartwood showed the strongest antifungal activity and contained two antifungal metabolites which were identified as ${\alpha}$-cedrol and widdrol by GC-MS analysis. ${\alpha}$-Cedrol and widdrol isolated from P. santalinus heartwood extract had 31.25 mg/l and 125 mg/l of minimal inhibitory concentration against the spore germination of F. graminearum, and also showed broad spectrum antifungal activities against various plant pathogens. In addition, the wettable powder type formulation of heartwood extract of P. santalinus decreased FHB incidence in dose-dependent manner and suppressed the development of FHB with control values of 87.2% at 250-fold dilution, similar to that of chemical fungicide (92.6% at 2,000-fold dilution). This study suggests that the heartwood extract of P. santalinus could be used as an effective biofungicide for the control of FHB.

Biological Control of Fusarium Head Blight on Wheat by Polyacetylenes Derived from Cirsium japonicum Roots (대계근에서 분리한 Polyacetylene계 화합물을 이용한 밀 이삭마름병 방제)

  • Kim, Ji-In;Kim, Kihyun;Park, Ae Ran;Choi, Gyung Ja;Park, Hae Woong;Kim, In Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.145-151
    • /
    • 2016
  • Chemical fungicides have reduced Fusarium head blight (FHB) severity. However, by the effects of fungicide residues, they can only be used up to 30 days before time of harvest. Therefore, the development of new biofungicides that are applicable until harvest is required. In order to select plant extracts having antifungal activity against Fusarium graminearum for the control of FHB, we investigated the inhibitory effects of 225 medicinal plant extracts on spore germination of F. graminearum. Of these plant extracts, the methanol extract of Cirsium japonicum (CJ) roots showed the strongest antifungal activity. Through solvent partitioning, repeated column chromatography, and spore germination bioassay, two chemicals were purified and then their chemical structures were identified as ciryneol C (CC) and 1-heptadecene-11,13-diyne-8,9,10-triol (HD-ol) which are polyacetylene substances. Two active compounds effectively inhibited the germination of F. graminearum macroconidia; HD-ol ($IC_{50}$ of $3.17{\mu}g/ml$) showed stronger spore germination inhibitory activity than that of CC ($IC_{50}$ of $28.14{\mu}g/ml$). In addition, the wettable powder type formulation of ethyl acetate extract of CJ roots suppressed the development of FHB in dose-dependent manner, with control values of 78.92% and 31.56% at 250- and 500-fold dilutions, respectively. Combining these findings suggest that the crude extract of CJ roots containing polyacetylene compounds could be used as botanical fungicide for the control of FHB.