• Title/Summary/Keyword: boron doping

Search Result 142, Processing Time 0.03 seconds

Reverse annealing of $P^+/B^+$ ion shower doped poly-Si

  • Jin, Beop-Jong;Hong, Won-Eui;Ro, Jae-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.752-755
    • /
    • 2006
  • Reverse annealing was observed in $P^+/B^+$ ion shower doped poly-Si upon activation annealing. Phosphorous or boron was implanted by ion shower doping using a source gas mixture of $PH_3/H_2$ or $B_2H_6/H_2$. Activation annealing was conducted using a tube furnace in the temperature ranges from $350^{\circ}C$ to $650^{\circ}C$. Hall measurement revealed that reverse annealing begins at different annealing temperatures for poly-Si implanted with P and B, respectively. It was observed that reverse annealing starts at $550^{\circ}C$$ in $P^+$ ion shower doped poly-Si, while at $350^{\circ}C$ in the case of B-doping.

  • PDF

Study of the Mobility for Strained p-type $Si_{1-x}Ge_x$ Alloys (변형 힘을 받는 p형 $Si_{1-x}Ge_x$의 이동도 연구)

  • 전상국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.181-187
    • /
    • 1998
  • The ionization energy and degree of ionization for p-type $Si_{1-x}Ge_x$ with boron doping are calculated taking into account the screening and broadening effects. The drift and Hall mobilities are then calculated using the relaxation time approximation and compared with the previously reported measurement data for relaxed and strained $Si_{1-x}Ge_x$ alloys to estimate the alloy scattering potential. From a fit, the alloy scattering potential is found to be 0.5 eV. The in-plane drift mobility for p-type strained $Si_{1-x}Ge_x$ grown on (001) Si substrate is approximately 1+$10x^2$ times higher than that for bulk Si in the high doping range.

  • PDF

Screening and broadening effects on the mobilities for p-type Si and Ge (Screening 현상 및 broadening 현상이 p형 Si과 Ge의 이동도에 미치는 효과)

  • 전상국
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.581-588
    • /
    • 1997
  • The ionization energy and degree of ionization for Si and Ge with boron doping are calculated. The hole mobilities are then calculated as a function of doping concentration using the relaxation time approximation. When the screening effect is taken into account, the reduction of ionization energy results in the increase of degree of ionization. As a result, the calculated Si mobility becomes closer to the experimental data, whereas the calculated Ge mobility is almost independent of the screening effect. The inclusion of the broadening effect in the mobility calculation overestimates the ionized impurity scattering. As compared with the experiment, the screening effect is not avoidable to calculate Si and Ge mobilities, and the broadening effect must accompany with the hopping process.

  • PDF

CHARACTERISTICS OF THE HETEROEPITAXIAL Si1-xGex FILMS GROWN BY RTCVD METHOD

  • Chung, W.J.;Kwon, Y.K.;Bae, Y.H.;Kim, K.I.;Kang, B.K.;Sohn, B.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.84-89
    • /
    • 1995
  • The growth and the film characteristics of heteroepitaxial $Si_{1-x}Ge_x$ films growth by the Rapid Thermal Chemical Vapor Deposition(RTCVD)method are described. For the growth of $Si_{1-x}Ge_x$ heteroepitaxial layers, $SiH_4/GeH_4/H_2$gas mixtures are used. The growth conditions are varied to investigate their effects on the Si/Ge composition ratios, the interface abruptness and crystalline properties. The Si/Ge composition ratios are analyzed with the RBS and the SIMS techniques, and the interface abruptness are deduced from these data. The crystalline properties are analyzed from TEM pictures. The experimental data shows that the crystalline perfection is excellent at the growth temperature of as low as $650^{\circ}C$, and the composition ratios change linearly with $SiH_4/GeT_$$ gas mixing ratios in our experimental ranges. Boron doping experiments are also performed using 200 ppm $B_2H_6$ source gas. The doping profiles are measured with SIMS technique. The SIMS data shows that the doping abruptness can be controlled within about 200$\AA$/decade.

  • PDF

Study on the Improvement of Sub-Micron Channel P-MOSFET ($1{\mu}m$ 이하의 채널 길이를 가지는 P-MOSFET의 특성 개선에 관한 연구)

  • Park, Young-June
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.472-477
    • /
    • 1987
  • In order to prevent the short-channel effects due to threshold voltage adjustment implantation in conventional n+ doped silicon gate process, a new approach involving automatic doping of polycide by boron during source and drain implantation is introduced. P-MOSFET devece fabricated by theis approach shows improved short channel characteristics than conventional device with n+ doped gate. Some concerns of adopting this approach in CMOS technology are addressed togetheer with some suggestions.

  • PDF

Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD (플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과)

  • 김현철;이재신
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4, CH_4,\;and\; B_2H_6$. Physical and chemical properties of a-SiC:H films grown with varing the ratio of $B_2H_6/(SiH_4+CH_4)$ were characterized with various analysis methods including scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, secondary ion mass spectroscopy (SIMS), UV absorption CH_4spectroscopy and electrical conductivity measurements. With the B-doping concentration, the doping efficiency and the micro-crystallinity were decreased and the film became amorphous when $B_2H_6/(SiH_4{plus}CH_4)$ was over $5{\times}10^{-3}$. The addition of $B_2H_6$ gas during deposition decreased the H content in the film by lowering the quantity of Si-C-H bonds. Consequently, the optical band gap and the activation energy of a-SiC:H films were decreased with increasing the B-doping level.

  • PDF

Effects of Polyacrylic Acid Doping on Microstructure and Critical Current Density of $MgB_2$ Bulk ($MgB_2$ bulk의 미세구조와 임계전류밀도에 미치는 polyacrylic acid doping 효과)

  • Lee, S.M.;Hwang, S.M.;Lee, C.M.;Joo, J.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • We fabricated the polyacrylic acid (PAA)-doped $MgB_2$ bulks and characterized their lattice parameters, actual C substitutions, microstructures, and critical properties. The boron (B) powder was mixed with PAA using N,N-dimethylformamide as solvent and then the solution was dried out at $200^{\circ}C$ and crushed. The C treated B powder and magnesium powder were mixed and compacted by uniaxial pressing at 500 MPa, followed by sintering at $900^{\circ}C$ for 1 h in high purity Ar atmosphere. We observed that the PAA doping increased the MgO amount but decreased the grain size, a-axis lattice constant, and critical temperature ($T_c$), which is indicative of the C substitution for B sites in $MgB_2$. In addition, the critical current density ($J_c$) at high magnetic field was significantly improved with increasing PAA addition: at 5 K and 6.6 T, the $J_c$ of 7 wt% PAA-doped sample was $6.39\;{\times}\;10^3\;A/cm^2$ which was approximately 6-fold higher than that of the pure sample ($1.04\;{\times}\;10^3\;A/cm^2$). This improvement was probably due to the C substitution and the refinement of grain size by PAA doping, suggesting that PAA is an effective dopant in improving $J_c$(B) performance of $MgB_2$.

Applications of XPS and SIMS for the development of Si quantum dot solar cell

  • Kim, Gyeong-Jung;Hong, Seung-Hwi;Kim, Yong-Seong;Lee, U;Kim, Yeong-Heon;Seo, Se-Yeong;Jang, Jong-Sik;Sin, Dong-Hui;Choe, Seok-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.297-297
    • /
    • 2010
  • Precise control of the position and density of doping elements at the nanoscale is becoming a central issue for realizing state-of-the-art silicon-based optoelectronic devices. As dimensions are scaled down to take benefits from the quantum confinement effect, however, the presence of interfaces and the nature of materials adjacent to silicon turn out to be important and govern the physical properties. Utilization of visible light is a promising method to overcome the efficiency limit of the crystalline Si solar cells. Si quantum dots (QDs) have been proposed as an emission source of visible light, which is based on the quantum confinement effect. Light emission in the visible wavelength has been reported by controlling the size and density of Si QDs embedded within various types of insulating matrix. For the realization of all-Si QD solar cells with homojunctions, it is prerequisite not only to optimize the impurity doping for both p- and n-type Si QDs, but also to construct p-n homojunctions between them. In this study, XPS and SIMS were used for the development of p-type and n-type Si quantum dot solar cells. The stoichiometry of SiOx layers were controlled by in-situ XPS analysis and the concentration of B and P by SIMS for the activated doping in Si nano structures. Especially, it has been experimentally evidenced that boron atoms in silicon nanostructures confined in SiO2 matrix can segregate into the Si/$SiO_2$ interfaces and the Si bulk forming a distinct bimodal spatial distribution. By performing quantitative analysis and theoretical modelling, it has been found that boron incorporated into the four-fold Si crystal lattice can have electrical activity. Based on these findings, p-type Si quantum dot solar cell with the energy-conversion efficiency of 10.2% was realized from a [B-doped $SiO_{1.2}$(2 nm)/$SiO_2(2\;nm)]^{25}$ superlattice film with a B doping level of $4.0{\times}10^{20}\;atoms/cm^2$.

  • PDF

Superconducting Properties of Mg(B1-xCx)2 Bulk Synthesized Using Magnesium and Glycerin-treated Boron Powder (마그네슘과 글리세린 처리한 붕소 분말로 합성한 Mg(B1-xCx)2의 초전도 특성)

  • Kim, Yi-Jeong;Jun, Byung-Hyuk;Park, Soon-Dong;Tan, Kai Sin;Kim, Bong-Goo;Sohn, Jae-Min;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.182-187
    • /
    • 2008
  • Carbon was known to be one of effective additives which can improve the flux pinning of $MgB_2$ at high magnetic fields. In this study, glycerin $(C_3H_8O_3)$ was selected as a chemical carbon source for the improvement of critical current density of $MgB_2$. In order to replace some of boron atoms by carbon atoms, the boron powder was heat-treated with liquid glycerin. The glycerin-treated boron powder was mixed with an appropriate amount of magnesium powder to $MgB_2$ composition and the powder pallets were heat treated at $650^{\circ}C\;and\;900^{\circ}C$ for 30 min in a flowing argon gas. It was found that the superconducting transition temperature $(T_c)$ of $Mg(B_{1-x}C_x)_2$ prepared using glycerin-treated boron powder was 36.6 K, which is slightly smaller than $T_c$(37.1 K) of undoped $MgB_2$. The critical current density $(J_c)$ of $Mg(B_{1-x}C_x)_2$ was higher than that of undoped $MgB_2$ and the $T_c$ improvement effect was more remarkable at higher magnetic fields. The $T_c$, decrease and $J_c$ increase associated with the glycerin treatment for boron powder was explained in terms of the carbon substitution to boron site.

Nano-gap Trench Etching using Forward Biased PN Junction for High Performance MEMS Devices (고성능 MEMS 소자를 위한 순방향 전극이 걸린 PN 접합을 이용한 나노 간격 홈의 식각)

  • Jeong, Jin-Woo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.833-836
    • /
    • 2005
  • Nano-gap trench is fabricated by the novel electrochemical etching technique using forward biased PN junction formed at the backside of the wafer. PN junction is formed using boron nitride wafer and the concentration of the boron doping is the high value of $1{\times}10^{19}$ $cm^{-3}$. The electro-chemical etching is performed in the 5% HF solution under the forward bias voltage of $1{\sim}2V$. The relationship between the etch rate of the trench and the voltage of the forward bias is investigated and the dependence of the gap for the voltage also examined. The etch rate increase from 0.027 ${\mu}m/min$ to 0.031 ${\mu}m/min$ as the value of the applied voltage increase from 1V to 2V, but the the gap is kept constant value of 40 nm.

  • PDF