• Title/Summary/Keyword: boron analysis

Search Result 264, Processing Time 0.023 seconds

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

Characteristics and management of citrus orchard soils in Jeju (제주도(濟州道) 감귤원토양(柑橘園土壤)의 특성(特性)과 관리(管理))

  • Park, Hoon;Yoo, Sun-Ho;Hong, Soon Beum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.135-152
    • /
    • 1975
  • The following informations are known from physical and chemical characteristics of orchard soils and nutritional diagnosis of orange leaves in Jeju. 1. Most orange orchards are located on terrace and cindercone thus soil moisture and microclimate of an orchard will greatly be affected by its topography. 2. Excessive well drainage, shallow soil depth, high content of gravels, low solid phase ratio and strong wind will give severe problem of soil moisture and wind errosion, thus the exte- nsion of soil depth is necessary for maintain nutrients, water and sufficient root volume. 3. Available soil water was significantly and positively correlated with organic matter content and clay content also contributes to available soil water. Vinyl mulching was greatly helpful for soil water conservation, wind errosion prevention, soil temperature increases during winter. 4. Abundant amphoteric amorphous allophane take a key role to fix phosphorus and also rations and thus it is the major factor to determine fertilizer efficiency. Lime and phosphorus must be applied in deeper soil layer. Release of filed phosphorus must be reevluated for availability. 5. Organic matter such as see weeds will greatly increase fertilizer efficiency and low fertilizer efficiency during spring may be related to available soil water. 6. Nitrogen was in superoptimum and Mg was enough but P and Ca were somewhat deficient according to leaf analysies while K was deficient according to fruit analysis. Phosphorus application increased sugar/acid ratio and potassium decreases rind percentage. 7. Manganese deficiency and toxicity appeared in a few places. Iron and boron were enough. Most places showed tendency of copper excess but some places showed copper deficiency. 8. Soiling after elimination of rock base, application of slow release fertilizer and abundant organic matter, vinyl mulching and drip irrigation will increase fertilizer efficiency greatly and fruit yield drastically.

  • PDF

Dosimetric Characteristics of a Thermal Neutron Beam Facility for Neutron Capture Therapy at HANARO Reactor (하나로 원자로 BNCT 열중성자 조사장치에 대한 선량특성연구)

  • Lee, Dong-Han;Suh, So-Heigh;Ji, Young-Hoon;Choi, Moon-Sik;Park, Jae-Hong;Kim, Kum-Bae;Yoo, Seung-Yul;Kim, Myong-Seop;Lee, Byung-Chul;Chun, Ki-Jung;Cho, Jae-Won;Kim, Mi-Sook
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2007
  • A thermal neutron beam facility utilizing a typical tangential beam port for Neutron Capture Therapy was installed at the HANARO, 30 MW multi-purpose research reactor. Mixed beams with different physical characteristics and relative biological effectiveness would be emitted from the BNCT irradiation facility, so a quantitative analysis of each component of the mixed beams should be performed to determine the accurate delivered dose. Thus, various techniques were applied including the use of activation foils, TLDs and ionization chambers. All the dose measurements were perform ed with the water phantom filled with distilled water. The results of the measurement were compared with MCNP4B calculation. The thermal neutron fluxes were $1.02E9n/cm^2{\cdot}s\;and\;6.07E8n/cm^2{\cdot}s$ at 10 and 20 mm depth respectively, and the fast neutron dose rate was insignificant as 0.11 Gy/hr at 10 mm depth in water The gamma-ray dose rate was 5.10 Gy/hr at 20 mm depth in water Good agreement within 5%, has been obtained between the measured dose and the calculated dose using MCNP for neutron and gamma component and discrepancy with 14% for fast neutron flux Considering the difficulty of neutron detection, the current study support the reliability of these results and confirmed the suitability of the thermal neutron beam as a dosimetric data for BNCT clinical trials.

  • PDF

Analysis of Physiological Activity and Cytotoxicity of Fermented and Hot Water Extracts Using Residues after Onion Harvest (양파 수확 후 잔재물을 이용한 발효 및 열수 추출물의 생리활성과 세포독성 분석)

  • Kim, Tae-Won;Lee, Geon-Hee;Jeon, Byeong-Gyun;Lee, Sung-Ho
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1163-1169
    • /
    • 2018
  • In order to utilize the residue that is thrown away after an onion harvest, we analyzed the physiological activity and cytotoxicity of fermented and hot water extracts of the residue. The pH of the extracts were all acidic, and organic matter content was 0.75% in the fermented extract and four times more than 0.19% in the hot water extract. The contents of nitrogen, phosphoric acid, calcium, and magnesium components, except for the potassium component among macroelements, were higher in the fermented extract than in the hot water extract. The content of iron and silicon among the micro-elements was also higher in the fermented extract than in the hot water extract. In addition, the content of boron was higher in the hot water extract than in the fermented extract. The total polyphenol contents of the fermented and hot water extracts were $16.2{\pm}3.3mg{\cdot}g^{-1}$ and $14.6{\pm}1.4mg{\cdot}g^{-1}$, respectively, which was $1.6mg{\cdot}g^{-1}$ higher in the fermented extract than in the hot water extract. However, the total flavonoid contents of the fermented and hot water extracts were $0.1{\pm}0.1mg{\cdot}g^{-1}$ and $4.8{\pm}0.7mg{\cdot}g^{-1}$, respectively, which was $4.7mg{\cdot}g^{-1}$ higher in the hot water extract than in the fermented extract. DPPH and ABTS radical scavenging ability for antioxidant activity were higher in the hot water extract than the fermented extract. The cytotoxicity of the extract using MTT assay showed cell viability of 101.6% and 97.9% in the fermented and hot water extracts, respectively. It was confirmed that there was no cytotoxicity in either extract.