• Title/Summary/Keyword: boron addition

Search Result 204, Processing Time 0.039 seconds

Influence of Mo and Cr Contents on Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Mo 및 Cr 함량의 영향)

  • Hwang, Byoungchul;Suh, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.555-561
    • /
    • 2013
  • The hardenability of low-carbon boron steels with different molybdenum and chromium contents was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy (SIMS), and then discussed in terms of the segregation and precipitation behaviors of boron. The hardenability was quantitatively evaluated by a critical cooling rate obtained from the hardness distribution plotted as a function of cooling rate. It was found that the molybdenum addition was more effective than the chromium addition to increase the hardenability of boron steels, in contrast to boron-free steels. The addition of 0.2 wt.% molybdenum completely suppressed the formation of eutectoid ferrite, even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.5 wt.% chromium did this at cooling rates above $3^{\circ}C/s$. The SIMS analysis results to observe the boron distribution at the austenite grain boundaries confirmed that the addition of 0.2 wt.% molybdenum effectively increased the hardenability of boron steels, as the boron atoms were significantly segregated to the austenite grain boundaries without the precipitation of borocarbide, thus retarding the austenite-to-ferrite transformation compared to the addition of 0.5 wt.% chromium. On the other hand, the synergistic effect of molybdenum and boron on the hardenability of boron steels could be explained from thermodynamic and kinetic perspectives.

Effect of W Addition on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 W 첨가의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.488-494
    • /
    • 2014
  • The effect of tungsten (W) addition on the hardenability of low-carbon boron steels was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy. The hardenability was discussed with respect to transformation behaviour aspects depending on the segregation and precipitation of boron at austenite grain boundaries. A critical cooling rate producing a hardness corresponding to 90 % martensite structure was measured from a hardness distribution plot, and was used as a criterion to estimate hardenability at faster cooling rates. In the low-carbon boron steel, the addition of 0.50 wt.% W was comparable to that of 0.20 wt.% molybdenum in terms of critical cooling rate, indicating hardenability at faster cooling rates. However, the addition of 0.50 wt.% W was not more effective than the addition of .0.20 wt.% molybdenum at slower cooling rates. The addition of 0.20 wt.% molybdenum completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.50 wt.% W did not, even at the cooling rate of $1.0^{\circ}C/s$. Therefore, it was found that the effect of alloying elements on the hardenability of low-carbon boron steels can be differently evaluated according to cooling rate.

Effects of C, Mo and Cr on Hardenability and Mechanical Properties of Boron-Bearing Steels (보론강의 경화능과 인장 특성에 미치는C, Mo, Cr의 영향)

  • Yim, H.S.;Jung, W.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.241-247
    • /
    • 2013
  • Hardenability and mechanical properties of boron-bearing steels containing C, Mo and Cr were investigated in this study. Using quench dilatometer, the steel specimens were cooled down to room temperature at different cooling rates to construct continuous cooling transformation diagrams and then the transformation products from austenite were examined. A critical cooling rate was introduced as an index to quantitatively evaluate the hardenability. The C addition to boron-bearing steels did not significantly affect hardenability compared to boron-free steels although it increases the hardenability. With the same content, the Mo addition largely increased the hardenability of boron-bearing steels than the Cr addition because it decreased both the transformation start and finish temperatures at low cooling rates. In particular, the Mo addition completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, whereas the Cr addition nearly suppressed it at the cooling rates above $3^{\circ}C/s$.

Influence of Nb Addition and Austenitizing Temperature on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Nb 첨가와 오스테나이트화 온도의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.577-582
    • /
    • 2015
  • The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of $M_{23}(C,B)_6$ along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of $3^{\circ}C/s$, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.

A Study for the Effects of Boron Addition on Machinability and Wear Resistance of Ductile Cast Iron (구상흑연주철의 피절삭성과 내마모성에 미치는 Boron 첨가의 효과에 관한 연구)

  • Choi, Yang-Jin;Lee, Byung-Yehp;Kwon, Hyuk-Mu;Baek, Sang-Han;Park, Yong-Jin
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.75-81
    • /
    • 1994
  • It is very important to obtain high performance ductile iron by addition a small amount of alloying elements. In this study, to improve the characteristics of small piston ring casted from ductile iron melt a small amount of boron($0{\sim}0.008wt.%$) that is powerful carbide stabilizer was added in ductile iron, and inspected it`s effects on the microstructure, wear resistance, machinability and mechanical properties. The results obtained from this study are as follows. 1. As the amount of boron increased to 0.04wt.%, the machinability of ductile iron is increased, and if the amount is in excess of 0.04wt.% the machinability is decreased conversely. 2. The wear resistance of ductile iron is improved by boron addition. 3. The recommended ladle addition of boron amount ranges from 0.04wt.% to 0.06wt.% for the use of small piston ring.

  • PDF

Toughening of Boron Carbide Ceramics by Addition of $TiB_2$ ($TiB_2$ 첨가에 의한 탄화붕소 소결체의 파괴인성 증진)

  • 이채현;박원규;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.464-470
    • /
    • 1996
  • Toughening mechanism of boron carbide ceramics by the addition of titanium boride was investigated. Speci-men was prepared by hot pressing of boron carbide with upto 30vol% of titanium boride particulates. Toughness of boron carbide ceramics was increased from 4.7 MPa m1/2 to 6.3 MPa m1/2 with 15 vol% TiB2 addition. But further increase of TiB2 content results in slow decrease of toughness. From microstructure evaluation and crack propagation behavior it is concluded that the major toughening mechanism is crack deflection pheno-mena.

  • PDF

Performance Improvement of Nonformaldehyde Wrinkle Resistant Finished Cotton Fabrics Treated with Dialdehydes

  • Park, Hyung-Min;Kim, Yong-Min
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.190-195
    • /
    • 2001
  • Additives, such as sodium perborate and borax, were examined in dialdehyde wrinkle resistant finishing of cotton. Results indicated that the whiteness index(WI) of cotton treated with dialdehyde and additive showed about 90% of WI of the untreated cotton but with decrease in wrinkle recovery angle (WRA) due to inhibition effect of these additives. Effect of additive on the WRA reduction was more prominent with glutaraldehyde than with glyoxal. Reduction in WRA of cotton treated with both dialdehydes and boron compound was minimized by simultaneous addition of formic acid in the bath. Addition of formic acid was also generally beneficial in maintaining WI retentions after 8 months storage. Furthermore, boron compounds were also effective in improving retentions of mechanical properties. By FTIR analysis the residual aldehyde group was detected on the dialdehyde-finished cotton, whereas no peak was shown by addition of boron compounds. This suggested that the residual aldehyde group was a main cause of fabric yellowing on the dialdehyde-finished cotton. Dialhehyde with boron compound, therefore, can be used to replace a conventional formaldehyde-containing wrinkle resistant finishing of cotton.

  • PDF

Effect of gadolinium and boron addition on the texture development and magnetic properties of 23Cr-10NiCu duplex stainless steels

  • Baik, Youl;Kang, Bo Kyeong;Choi, Yong;Woo, Wan Chuck
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1887-1892
    • /
    • 2021
  • The effect of gadolinium and boron on the texture development and magnetic properties of the texture controlled 23Cr-10NiCu duplex stainless steels were studied to develop a high performance neutron and electromagnetic shielding material. The 23Cr-10NiCu base alloy is composed of 60% of austenite and 40% of ferrite, whereas, the 23Cr-10NiCu-0.5Gd-0.8B modified alloy is composed of 66% of austenite, 27% of ferrite and 7% of CrFeB intermetallic compounds. The gadolinium and boron addition to the 23Cr-10NiCu base alloy increased mechanical properties. Microstructure observation showed that the small addition of 0.5 wt% gadolinium and 0.8 wt% boron to the alloy retarded to form texture at the same hot rolling conditions, and improved the maximum magnetism, residual magnetism and coercive force about 3%, 122% and 120%, respectively.

Effect of Austenitizing Temperature on the Hardenability and Tensile Properties of Boron Steels (오스테나이트화 온도에 따른 보론강의 경화능과 인장 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.497-502
    • /
    • 2015
  • The hardenability of boron steel specimens with different molybdenum and chromium contents was investigated using dilatometry and microstructural observations, and then was quantitatively measured at a critical cooling rate corresponding to 90 % martensite hardness obtained from a hardness distribution plotted as a function of cooling rate. Based on the results, the effect of an austenitizing temperature on the hardenability and tensile properties was discussed in terms of segregation and precipitation behavior of boron atoms at austenite grain boundaries. The molybdenum addition completely suppressed the formation of pro-eutectoid ferrite even at the slowest cooling rate of $0.2^{\circ}C/s$, while the chromium addition did at the cooling rates above $3^{\circ}C/s$. On the other hand, the hardenability of the molybdenum-added boron steel specimens decreased with an increasing austenitizing temperature. This is associated with the preferred precipitation of boron atoms since a considerable number of boron atoms could be concentrated along austenite grain boundaries by a non-equilibrium segregation mechanism. The secondary ion mass spectroscopy results showed that boron atoms were mostly segregated at austenite grain boundaries without noticeable precipitation at higher austenitization temperatures, while they formed as precipitates at lower austenitization temperatures, particularly in the molybdenum-added boron steel specimens.

A Study on Fatigue strength by hardenability of Boron Addition Steel (보론 첨가강의 경화기구에 따른 기계적 성질에 관한 연구)

  • Lee, Jong-Hyung;Yoo, Duck-Sang;Park, Shin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.299-305
    • /
    • 2003
  • This research is for the relationship with heat treatment cooling temprature and the characteristic of Mechanical properties of Boron-Addition-Steel, the main material and SM25C steel, the sub material, structure viewing fractography, hardness test, tensite test and are carried out after the manufacturing small-specimen treated with heat of $750^{\circ}C$, $850^{\circ}C$, $1050^{\circ}C$. The influence to the Mechanical properties accompanied by AISI51B20, Boron-Addition-steel shows the following result. 1. The influenc of heat treatment by the content of cabon-steel is dominant. Addition of boron result is Strengthening structure effectively by segregation and improving over all mechanical characters such as good. it results from the increase of temacity by the stability of inter granular with improvement of harden-ability. 2. Boron-Addition-Steel exist in the from of martensite structure accompanied by the ferrite precipitition centering around grain boundary, and is improved to Hv 200. 3. The height of harden-ability and fatigue stress the influence of heat results from crystal structure of martensite by difference of strength level in the structure of ferrite and doesn't have am effect on sensibility of temperature, and turns out to defend on production and growth of Matrix-structure-factor.

  • PDF