• Title/Summary/Keyword: boost 변환기

Search Result 121, Processing Time 0.022 seconds

A Integrated Circuit Design of DC-DC Converter for Flat Panel Display (플랫 판넬표시장치용 DC-DC 컨버터 집적회로의 설계)

  • Lee, Jun-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.231-238
    • /
    • 2013
  • This paper describes a DC-DC converter IC for Flat Panel Displays. In case of operate LCD devices various type of DC supply voltage is needed. This device can convert DC voltage from 6~14[V] single supply to -5[V], 15[V], 23[V], and 3.3[V] DC supplies. In order to meet current and voltage specification considered different type of DC-DC converter circuits. In this work a negative charge pump DC-DC converter(-5V), a positive charge pump DC-DC converter(15V), a switching Type Boost DC-DC converter(23V) and a buck DC-DC converter(3.3V). And a oscillator, a thermal shut down circuit, level shift circuits, a bandgap reference circuits are designed. This device has been designed in a 0.35[${\mu}m$] triple-well, double poly, double metal 30[V] CMOS process. The designed circuit is simulated and this one chip product could be applicable for flat panel displays.

Development of TIG-Welder DC-DC Converter Based on Fuel Cell Stack (연료전지로 구동되는 TIG-용접기용 DC-DC 컨버터 개발)

  • Min, Myung-Sik;Park, Sang-Hoon;Jeon, Byum-Soo;Won, Chung-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the power conversion system for TIG-welder using the fuel cell stack Generally, power supply for TIG-welder uses the front-ended diode bridge rectifier by common AC power source. In this case, power supply of TIG-welder increases in volume because of using bulky capacitor and diode-rectifier. Also, input current includes ripple and harmonics. Moreover, TIG-welder will be demand the power supply with lightweight and easy movement in the areas like as the islands and mountainous areas or the special environment are not use common AC power source. Thus, input power of the power conversion system for TIG-welder is used PEMFC(Polymer Electrolyte Membrane Fuel Cell), and the power conversion system is comprised of full-bridge converter with function of boost converter and inverter welding source, in this paper. The proposed power conversion system which is power supply for TIG-welder was verified by computer simulations and experiments.

Design of high slew-rate OTA for DC-DC converters (DC-DC 컨버터용 높은 슬류율의 OTA 설계)

  • Kim, In-Suk;Ryu, Seong-Young;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.118-125
    • /
    • 2006
  • A new error amplifier is presented for fast transient response of DC-DC converters. The amplifier has low quiescent current to achieve high power conversion efficiency, but it can supply sufficient current during large signal operation. Two comparators detect large-signal variations, and turn on extra current supplier if necessary. The amount of extra current is well controlled, so that the system stability can be guaranteed in various operating conditions. The simulation results show that the new error amplifier achieves significant improvement in transient response than the conventional one.

Simple Structure LED-Driving Power Converter with High Power Factor (높은 역률을 가지는 단순 구조 LED 구동 전력컨버터)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.767-773
    • /
    • 2018
  • This paper proposes the simple structure LED-driving power converter with high power factor. As the proposed power converter combines the PFC boost converter and the conventional flyback converter into only one power conversion circuit, it simplifies the structure of LED-driving power converter. Thus the proposed converter is controlled using only one PWM controller IC, and it achieves high power factor, constant output voltage/current and cost-effectiveness. Therefore the proposed converter is suitable for the industry production and utilization of LED-light-system. In this paper, the operation analysis and design example of the proposed converter are explained, briefly. Also experimental results of the prototype that is implemented based on the designed circuit parameters are shown to validate operation characteristics of the proposed converter.

Analysis of Operational Modes of Charger using Low-Voltage AC Current Source considering the Effects of Parasitic Components (기생성분을 고려한 저전압 AC 전류원 충전회로의 동작모드 해석)

  • Chung Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.70-77
    • /
    • 2005
  • A new converter to transfer energy from a low-voltage AC current source to a battery is proposed. It is focused to find operational modes of the converter. The low-voltage AC current source is an equivalent of the piezoelectric generator, which converts the mechanical energy to the electric energy. The converter consists of a full-bridge MOSFET rectifier and a MOSFET boost converter in order to make the converter small and efficient. The operational principle and modes of the converter are investigated with the consideration of effects of the parasitic capacitances of MOSFETs and diode. The results are proved with simulation studies using PSIM and Pspice.

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

A Study on Harmonic Correction of Air-Conditioner Power Conversion Equipment (에어컨 전력변환장치의 고조파 개선에 관한 연구)

  • Mun, Sang-Pil;Suh, Ki-Young;Lee, Hyun-Woo;Jung, Sang-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage -doubler diode rectifiers. In the conventional voltage-doubler rectifier circuit, relatively large capacitors are used to boost the output voltage, while the proposed circuit uses smaller ones and a small reactor not to boost the output voltage but improve the input current waveform. A high input power factor of 97[%] and an efficiency of 98[%] are also obtained. The harmonic guide lines of proposed rectifier is no interfered with inverter switching, resulting in a simple, reliable and low-cost ac-to dc converters in comparison with the boost-type current-improving circuits.It compared conventional pulse-widthmodulated(PWM)inverter with half pulse-widthmodulated (HPWM) inverter. Proposed HPWM inverter eliminated dead-time by lowering switchingloss and holding over-shooting.

A High-efficiency Single-phase Photovoltaic Inverter for High-voltage Photovoltaic Panels (고전압 태양광 패널용 고효율 단상 태양광 인버터)

  • Hyung-Min, Ryu
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.584-589
    • /
    • 2022
  • For DC-AC power conversion from a high-voltage photovoltaic panel to a single-phase grid, the two-stage transformerless inverter with a buck-boost converter followed by a full-bridge inverter is widely used. To avoid an excessive leakage current due to the large parasitic capacitance of the photovoltaic panel, the full-bridge inverter can only adopt the bipolar PWM which results in much higher power loss compared to the unipolar PWM. In order to overcome such a poor efficiency, this paper proposes a new topology in which an IGBT and a diode for circuit isolation are added to the buck-boost converter. The proposed circuit isolation method allows the unipolar PWM in the full-bridge inverter without any increase in the leakage current so that the overall efficiency can be improved. The validity of the proposed solution is verified by computer simulation and power loss calculation.

A Study on the Development of 3[kW] Power Conversion System for Fuel Cell (3[kW]급 연료전지용 전력변환기 개발에 관한 연구)

  • Kim, Se-Min;Park, Sung-Jun;Song, Sung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.88-95
    • /
    • 2009
  • This paper is the research on the development of power conversion system for the fuel cell. In composing the DC/DC converters which have high boost voltage ratio, unlike the conventional method a new multi DC/DC converter system is proposed that the diode and the condenser and the reactor can be reduced by connecting the secondary side output of the transformer. In this system the rectifier part and the filter part of the secondary side in the power transformer that is connecting in series are composed into a single module, which is the strong advantage and the number of level can be easily increased. A new variable shift phase switching method is also suggested that it makes possible to reduce the output voltage ripples in the proposed system. All the factors mentioned above have been verified through simulations and experiments, and the proposed converter is considered very useful in the demanded load which requires a wide of the output.

The Design of Single Phase PFC using a DSP (DSP를 이용한 단상 PFC의 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.57-65
    • /
    • 2007
  • This paper presents the design of single phase PFC(Power Factor Correction) using a DSP(TMS320F2812). In order to realize the proposed boost PFC converter in average current mode control, the DSP requires the A/D sampling values for a line input voltage, a inductor current, and the output voltage of the converter. Because of a FET switching noise, these sampling values contain a high frequency noise and switching ripple. The solution of A/D sampling keeps away from the switching point. Because the PWM duty is changed from 5% to 95%, we can#t decide a fixed sampling time. In this paper, the three A/D converters of the DSP are started using the prediction algorithm for the FET ON/OFF time at every sampling cycle(40 KHz). Implemented A/D sampling algorithm with only one timer of the DSP is very simple and gives the autostart of these A/D converters. From the experimental result, it was shown that the power factor was about 0.99 at wide input voltage, and the output ripple voltage was smaller than 5 Vpp at 80 Vdc output. Finally the parameters and gains of PI controllers are controlled by serial communication with Windows Xp based PC. Also it was shown that the implemented PFC converter can achieve the feasibility and the usefulness.