본 연구에서는 대학강좌에서 학생들의 소셜 북마킹 도구에 대한 인식 및 사용 행태를 분석하였다. 소셜 북마킹의 가치에 대한 최근 활발한 논의에도 불구하고 실제 이용자들이 어떻게 소셜 북마킹을 사용하는가에 대해서는 알려진 바가 많지 않다. 본 연구는 수업에서 학생들의 소셜 북마킹 도구인 딜리셔스 사용 행태와 인식을 바탕으로 소셜 북마킹이 제시하는 가치들이 실제에서 어떻게 나타나는지를 조사하였다. 학생들은 태깅, 기술, 네트워크의 기능을 소극적으로 사용하고 있었다. 이용자는 여전히 개인 정보 수집 및 관리의 도구로써 소셜 북마킹을 사용하고 있었으며, 소셜 북마킹 도구는 정보의 사용 및 재사용성은 향상시키고 있었으나 소셜 북마킹 도구가 지향하는 협력기반 정보공유, 협력기반 커뮤니티 구축 및 도메인 검색의 가치는 충분히 실현되지 못하고 있는 것으로 나타났다.
최근 들어 웹의 진화가 급속하게 진전되면서 사용자가 직접 참여하는 유형의 서비스들이 활발하게 보급되었다. 사용자들은 네트워크 공간상에서 여러 종류의 콘텐츠를 공유하며 의견을 교환한다. 이러한 서비스의 대표적인 예로 소셜 북마킹 사이트를 들 수 있다. 사이트의 이용자들은 웹 사이트를 북마킹하는 과정에 있어서 타인의 북마킹 내역 및 태그 정보를 공유하며태그를 생산하게 되는데 이를 협업적 태깅이라고 한다. 본 연구에서는 최근 활발하게 이용되는 소셜 북마킹 및 협업적 태깅에 대한 실증적인 분석을 수행하였다. 분석 결과 분석 결과 전체 이용자 중에서 아주 소수만이 북마킹 활동을 활발하게 수행하며, 소수의 사이트와 태그가 다수의 사용자에 의해 이용되었다. 24%의 사용자가 총 80%에 해당하는 태깅을 수행하였으며, 75%의 사이트와 81%의 태그가 3번 이하로 태깅되었다. 사용자에 따라서 북마킹 활동에도 차이가 있었으며, 가장 이른 시점에 부여된 태그가 다수의 동의를 얻었다. 특정 사이트의 태그 구성 비율은 점차 수렴해감을 확인할 수 있었다. 본 연구결과가 향후 소셜 북마킹 시스템의 발전에 도움이 시사점을 제공한다고 기대한다.
현재 웹 2.0 환경에서의 핵심 기술 중 하나는 사용자가 관심 있는 웹페이지를 태깅 및 북마킹 하는 소셜 북마킹 기술이다. 소셜 북마킹은 웹 콘텐츠에 태깅된 북마크 정보 및 태깅 결과를 기반으로 검색, 분류, 공유를 통해 효율적인 정보 제공을 주목적으로 하고 있다. 그러나 현재 소셜 북마킹 시스템들은 웹 콘텐츠의 사용자들의 관심 정도를 측정할 수 있는 북마크 수 및 검색과 분류를 목적으로 하는 태그 정보를 각각 독립적으로 검색에 활용하는 방식을 사용하고 있다. 이는 소셜 북마킹 시스템에서 중요한 특징을 가지는 북마크와 태깅 기술을 효율적으로 활용하지 못하는 결과가 된다. 이에 본 연구에서는 태그 클러스터링을 통한 연관 태그 추출에 관한 선행연구를 기반으로, 북마크 정보와 혼합하기 위한 웹 콘텐츠 랭킹 알고리즘을 제안하였다. 또한 제안 알고리즘의 효율성 분석을 위해 기존 검색 방법론들과의 비교평가를 시행하였으며, 그 결과 본 연구의 핵심적인 특징인 북마크와 태그 정보를 함께 활용한 소셜 북마크 시스템이 기존 시스템보다 효율적인 검색결과를 도출하였다.
소결 북마킹(social bookmarking) 시스템은 사용자가 북마크를 저장하고 공유할 수 있는 플랫폼을 제공하는 웹 기반(web-based) 시스템으로 폭소노미(folksonomy)를 이용한 대표적인 웹2.0 서비스이다. 소셜 북마킹 시스템에서의 스패머(spammer)란 자신들의 이익을 위해서 시스템을 고의적으로 악용하는 사람을 말한다. 스패머는 많은 양의 잘못된 정보를 시스템에 포스팅(posting)하기 때문에 전체 소셜 북마킹 시스템의 리소스(resource)를 쓸모없게 만들어 버린다. 따라서, 스패머를 빠른 시간 안에 탐지하고 그들의 접근을 차단하는 것은 시스템의 붕괴를 방지하기 위해 중요하다. 본 논문에서는 사용자가 사용한 태그에 대한 데이터를 추출하여, 사용자가 스패머 인지 아닌지를 예측하는 모델을 기계학습의 다양한 방법을 적용하여 생성한 후 그 성능을 비교해 보았다. 구체적으로, 결정테이블 (decision table, DT), 결정트리(decision tree, ID3), 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier), TAN(tree-augmented $na{\ddot{i}}ve$ Bayes) 분류기, 인공신경망(artificial neural network)의 방법을 비교하였다. 그 결과 AUC(area under the ROC curve)와 모델 생성시간을 고려하였을 때 나이브 베이즈 분류기가 가장 만족할 만한 성능을 보였다. 나이브 베이즈 분류기의 분류 결과가 가장 좋았던 이유는 성능을 비교하는 데 사용된 AUC가 결정트리 계열의 방법(ID3 등)보다 나이브 베이즈 분류기에서 일반적으로 높게 나오는 경향이 있다는 것과, 스패머 탐지 문제가 선형으로 분리 가능한 경우(lineally separable)와 유사할 가능성이 높기 때문으로 여겨진다.
웹 2.0의 발전에 따라 다양한 기술들이 제공되며 그 중 대두되는 기술로 사용자가 관심 있는 웹페이지를 태깅 및 북마킹하는 소셜 북마킹 기술이다. 그러나 현재 소셜 북마킹 시스템들은 웹 콘텐츠의 중요 정보인 다른 사용자들의 관심 정도를 측정할 수 있는 북마크 수 및 검색과 분류를 목적으로 하는 태그 정보를 각각 독립적으로 검색에 활용하며 또한, 다른 사용자들과의 유사도를 반영하지 못하여 소셜 북마킹 시스템의 특징을 반영하지 못한 검색결과를 도출하고 있는 실정이다. 이에 본 연구에서는 선행 연구를 기반으로 태그 클러스터링을 통한 연관 태그 추출 및 북마크 정보와 다른 사용자의 유사도를 혼합한 웹 콘텐츠 랭킹 알고리즘을 제안하였다. 또한 제안 알고리즘의 효율성 분석을 위해 기존 검색 방법론 및 선행 연구의 방법론과의 비교평가를 시행하였으며, 그 결과 본 연구의 핵심적인 특징인 태그 정보 및 북마크 수와 유사도를 활용한 방법이 기존 방법론보다 효율적인 결과를 도출하였다.
웹 2.0을 이끌어가는 원동력이라고 할 수 있는 일반 개인 사용자의 참여와 공유는 블로그, 소셜 네트워크(Social Network), 집단지성, 소셜 북마크(Social Bookmark), 태깅(Tagging) 등의 다양한 형태로 나타나고 있다. 이 중에서 소셜 북마크는 개인이 사용하는 북마크를 웹에 추가하여 공유함으로써, 다수의 사람들이 유용하다고 생각하는 북마크에 대한 정보를 기반으로 한 다양한 서비스를 제공하는 개념이다. 딜리셔스(Delicious.com)는 소셜 북마크 서비스의 대표적인 사례라고 할 수 있으며, 북마크에 사용자들이 붙인 태그를 이용하여 검색 서비스를 제공한다. 본 논문은 북마크 검색에 대해 개인화된 검색결과를 추천하기 위하여 사용자 태그를 기반으로 하여 딜리셔스가 제공하는 북마크들의 순위를 재순위화 하는 방법론을 제안하였다. 또한 태그유사도를 기반으로 한 태그 네트워크를 이용하여 사용자의 검색어에 의미적으로 유사한 다른 태그들도 순위에 반영될 수 있도록 하였다. 그리고 실험을 통하여 딜리셔스가 제시하는 순위에 비해 본 논문에서 제안하는 시스템의 재순위화 결과가 사용자들에게 더 만족스러우며 정확성도 높음을 확인하였다.
웹 2.0 이라 불리는 현 웹의 패러다임은 개방, 공유, 참여로 압축하여 말할 수 있다. 이 속에서는 사용자의 참여와 공유로 콘텐츠가 생산 또는 재생산된다. 이러한 콘텐츠는 사용자의 관심을 반영하기 때문에 사용자가 어떠한 콘텐츠를 만들어 냈는지, 수집했는지 등을 분석하면 사용자의 관심 범주를 추출할 수 있다. 본 논문에서는 사용자가 소셜 북마킹 서비스를 이용하며 생성한 태그를 바탕으로 사용자의 관심 범주를 추출하여 이를 통해 개인화 콘텐츠 제공 서비스를 제안한다. 우선, 웹 서비스에서 제공하는 피드를 이용하여 사용자가 생성한 태그 중 가장 많이 쓰인 10개의 태그와 그것들과 관련 있는 태그들만 모아서 관심 범주을 추출하기 위한 태그 집합을 구성한다. 구성된 태그 집합을 바탕으로 피어슨 상관 계수를 통해 태그 간 동시 사용률을 조사한다. 이후 사용자 흥미에 부합하는 콘텐츠를 검색하기 위해 조사된 동시 사용률을 바탕으로 검색 키워드 그룹을 추출한다. 이렇게 만들어진 키워드 그룹들은 사용자의 평소 관심사와 관련된 콘텐츠를 검색하는데 사용되며, 이를 통해 사용자의 관심 있는 내용의 콘텐츠를 사용자의 특별한 검색 절차 없이 제공받는다. 이러한 방식을 통해 사용자가 원하는 정보를 입력하는 절차 없이도 웹에 축적된 사용자의 정보를 사용하여 자동으로 개인화된 콘텐츠를 제공할 수 있을 것으로 기대 된다.
소셜 북마킹(social bookmarking)은 현재 웹에서 가장 활발한 트렌드 중의 하나이다. 소셜 북마크 시스템을 통해 사용자들은 원하는 웹 페이지에 그의 주제 또는 내용을 나타내는 태그(tag)들을 부착할 수 있다. 지금까지의 연구들은 주로 이러한 정보를 웹 검색을 향상시키는 데 사용해왔다. 본 논문에서는 웹 페이지에 부착된 태그들을 사용하여 두 웹 페이지 간의 의미적 유사도를 측정하는 방법을 제안한다.웹 페이지는 다양한 종류의 멀티미디어 데이터로 구성되어 있기 때문에, 웹 페이지 내부에 포함된 데이터를 사용하여 웹 페이지 간의 유사도를 측정하는 것은 매우 어려운 일이다. 하지만 사용자들에 의해 웹 페이지에 부착된 태그들을 사용하면 웹 페이지 간의 유사도는 매우 효과적으로 측정될 수 있다. 본 논문에서는 WSET (Web Page Similarity Based on Entire Tags)라 하는, 태그에 기반하여 웹 페이지 간의 유사도를 측정하는 새로운 방법을 제안한다. 실험 결과는 제안하는 방법이 기존 방법에 비해 더 좋은 결과를 나타냄을 보였다.
최근 다수의 소셜 네트워크가 빠르게 확산되었다. 그 중에서도 소셜 북마킹 시스템은 가장 널리 사용되는 것 중 하나이다. 소셜 북마킹 시스템은 사용자들이 온라인 자원에 태그를 부여해서 공유하고 관리할 수 있는 환경을 제공한다. 소셜 북마킹 시스템에서는 품질향상을 위해 태그와 시간 정보를 반영하여 개인에 특화된 추천을 할 수 있다. 본 논문에서는 가중치와 유사도 측정 과정에서 태그와 시간을 반영한 추천 시스템을 제안하였다. 또한 제안 방법론을 실제 데이터에 적용하였고, 실험결과 태그와 시간 정보를 함께 반영하였을 때 추천 성능이 향상됨을 확인하였다.
최근 소셜 태깅(social tagging)이 화두로 떠오르면서 전문가 집단에서 이루어지던 택소노미(taxonomy)에서 점차 사람들이 만들어가는 분류법인 폭소노미(folksonomy)의 형태로 변화하고 있다. 태그(tag)는 콘텐츠와의 접근이 직관적이기 때문에 원하는 콘텐츠로의 이동이 용이하며 그와 관련된 태그들을 만나면서 개인적인 회상능력을 증가시키고 사회적 영향력을 높이며, 우연한 정보의 발견, 재미있는 경험을 얻을 수 있다. 점차 네트워크 형성이 관심사로 연결된 형태로 커지면서 태그가 다른 형태의 콘텐츠를 한 곳에 묶어주는 역할을 담당하고 있다. 따라서 이 연구는 소셜 태깅에서 나타나는 사용자(user), 태그(tag), 리소스(resource) 간의 관계를 정리하고 사람들이 자신의 즐겨찾기 목록에 사이트를 추가하는 행위를 관심사로 보아, 이 때 입력한 태그를 어떠한 특징으로 나누어 볼 수 있을지 연구하였다. 이를 위해, 리소스 중심의 태그 분류를 7가지로 나누고, 이 분류법를 이용하여 소셜 북마킹(social bookmarking) 사이트 'del.icio.us' 에서 사용되고 있는 태그를 중심으로 음악, 사진, 게임의 세 가지 관심사 영역에서 사람들이 URL을 등록할 때에 어떠한 태그를 선택 하고 있는지 7가지 특징에 따라 분석하였다. 이를 통해 사이트를 바라보는 사람들의 관점을 파악해 볼 수 있고, 소셜 서비스 확장, 다양한 비지니스 모델을 설정 할 수 있는 가능성을 모색 해 볼 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.