• Title/Summary/Keyword: bone-seeking radiopharmaceuticals

Search Result 4, Processing Time 0.019 seconds

Radiopharmaceuticals for the Therapy of Metastatic Bone Pain (뼈전이의 방사성동위원소 통증치료)

  • Ahn, Byeong-Cheol
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.82-89
    • /
    • 2006
  • Bone metastasis is a common sequelae of solid malignant tumors such as prostate, breast, lung, and renal cancers, which can lead to various complications, including fractures, hypercalcemia, and bone pain, as well as reduced performance status and quality of life it occurs as a result of a complex pathophysiologic process between host and tumor cells leading to cellular invasion, migration adhesion, and stimulation of osteoclastic and osteoblastic activity. Several sequelae occur as a result of osseous metastases and resulting bone pain can lead to significant debilitation. A multidisciplinary approach is usually required not only to address the etiology of the pain and its complicating factors but also to treat the patient appropriately. Pharmaceutical therapy of bone pain, includes non-steroidal analgesics, opiates, steroids, hormones, bisphosphonates, and chemotherapy. While external beam radiation therapy remains the mainstay of pain palliation of a solitary lesions, bone seeking radiopharmaceuticals have entered the therapeutic armamentarium for the treatment of multiple painful osseous lesions. $^{32}P,\;^{89}SrCl,\;^{153}Sm-EDTMP,\;^{188}Re/^{186}Re-HEDP,\;and\;^{177}Lu-EDTMP$ can be used to treat painful osseous metastases. These various radiopharmaceuticals have shown good efficacy in relieving bone pain secondary to bone metastasis. This systemic form of metabolic radiotherapy is simple to administer and complements other treatment options. This has been associated with improved mobility in many patients, reduced dependence on narcotic and non-narcotic analgesics, improved performance status and quality of life, and, in some studios, improved survival. All of these agents, although comprising different physical and chemical characteristics, offer certain advantages in that they are simple to administer, are well tolerated by the patient if used appropriately, and can be used alone or in combination with the other forms of treatment. This article illustrates the salient features of these radiopharmaceuticals, including the usual therapuetic dose, method of administration, and indications for use and also describe about the pre-management checklists, and jndication/contraindication and follow-up protocol.

Prediction of radiation dose to adult human from radiopharmaceutical manufactured by third generation bisphosphonate labeled with Rhenium

  • Zahra Pourhabib;Hassan Ranjbar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.669-673
    • /
    • 2023
  • Introduction: The crucial step in preclinical process of radiopharmaceutical production is internal dosimetry evaluation by different ways to realize radiobiological dose-response relationships and to extract the results for clinical use. Till now several bone-seeking radiopharmaceuticals have been developed for bone metastasis. Interesting features of bisphosphonates attracted attentions to them in the field of radiopharmaceutical therapy and studies on new generation of them have been doing too. Materials and methods: In this study, we used ZNA as representative of the third generation. The radiopharmaceutical 188Re-ZNA was produced and its radiochemical purity was investigated. Then, the biological distribution of the produced radiopharmaceutical at 1, 2, 4 and 24 h after injection on different organs of mice were investigated. Finally, the absorbed dose of organs in the human body was assessed using the RADAR method. Results: The results show 96% radiochemical purity of the 188Re-ZNA radiopharmaceutical. The amount of %ID/g in bone is 1.131% after 1 h and in 24 h it has a significant amount compared to other organs, that is 0.516%. Also dosimetric results show that the highest absorption dose is related to bone and the amount of this dose is 0.050 mGy/MBq. Conclusion: Considering the possibility of producing the 188Re-ZNA radiopharmaceutical, as well as the proper distribution of this radiopharmaceutical in target and non-target organs and increasing the absorbed dose in bone, it can be concluded that this radiopharmaceutical can be useful in the "radiopharmaceutical therapy" in metastases.

$^{18}$F-Fluoride-PET in Skeletal Imaging ($^{18}$F-Fluoride-PET을 이용한 골격계 영상)

  • Jeon, Tae-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.253-258
    • /
    • 2009
  • Bone scintigraphy using $^{99m}$Tc-labeled phosphate agents has long been the standard evaluation method for whole skeletal system. However, recent shortage of $^{99m}$Tc supply and advanced positron emission tomography (PET) technology evoked the attention to surrogate radiopharmaceuticals and imaging modalities for bone. Actually, fluorine-18 ($^{18}$F) was the first bone seeking radiotracer before the introduction of $^{99m}$Tc-labeled agents even though its clinical application failed to become pervasive anymore after the rapid spread of Anger type gamma camera systems in early 1970s. However, rapidly developed PET technology made us refocus on the usefulness of $^{18}$F as a PET tracer. Early study comparing $^{18}$F-Na PET scan and planar bone scintigraphy reported that PET has higher sensitivity and specificity in the diagnosis of metastatic bone lesions than planar bone scan. Subsequent reports comparing between PET and both planar and SPECT bone image also revealed better results of PET scan in similar study groups. Rapid clinical application of PET/CT also accumulated considerable amount of experiences in skeletal evaluation and this modality is known to have better diagnostic power than stand alone PET system as well as bone scan. Furthermore $^{18}$F-Na PET/CT revealed better or at least equal results in detection of primary and metastatic bone lesions compared with CT and MRI. Therefore, it is obvious that $^{18}$F-Na PET/CT has potential to become new imaging modality for practical skeletal evaluation so continuous and careful evaluation of this modality and radiopharmaceutical must be required.

Preparation and Animal Imaging of $^{153}Sm$-EDTMP as a Bone Seeking Radiopharmaceutical (골친화성 방사성의약품 $^{153}Sm$-EDTMP의 합성과 동물영상)

  • Choi, Tae-Hyun;Kim, Se-Jung;Shin, Byung-Chul;Woo, Kwang-Sun;Chung, Wee-Sup;Choi, Chang-Woon;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.44-48
    • /
    • 2005
  • Purpose: Ethylenediamine-tetramethylenephosphonic acid (EDTMP) has widely used chelator for the labeling of bone seeking radiopharmaceuticals complexed with radiometals. $^{153}Sm$ can be produced by the HANARO reactor at the Korea Atomic Energy Research Institute, Taejon, Korea. $^{153}Sm$ has favourable radiation characteristics $T1/2=46.7\;h,\;{\beta}_{max}=0.81\;MeV\;(20%),\;0.71\;MeV\;(49%),\;0.64\;MeV\;(30%)\;and\;{\gamma}=103\;keV\;(30%)$ emission which is suitable for imaging purposes during therapy. We investigated the labeling condition of $^{153}Sm$-EDTMP and imaging of $^{153}Sm$-EDTMP in normal rats. Materials and methods: EDTMP 20 mg was solved in 0.1 mL 2 M NaOH. $^{153}SmCl^3$ was added to EDTMP solution and pH of the reaction mixtures was adjusted to 3 and 12, respectively. Radiochemical purity was determined with paper chromatography. After 30 min. reaction, reaction mixtures were neutralized to pH 7.4, and the stability was estimated upto 120 hrs. Imaging studies of each reaction were perfomed in normal rats (37 MBq/0.1 mL). Results: The labeling yield of $^{153}Sm$-EDTMP was 99%. The stability of pH 8 reaction at 60, 96 and 120 hr was 99%, 95%, 89% and that of pH 12 at 36, 60, 96 and 120 hr was 99%, 95%, 88%, 66%, respectively. The $^{153}Sm$-EDTMP showed constantly higher bone uptake from 2 to 48 hr after injection. Conclusion: $^{153}Sm$-EDTMP, labeled at pH 8 reaction condition, has been stably maintained. Image of $^{153}Sm$-EDTMP at 2, 24, 48 hr after injection, demonstrate that $^{153}Sm$-EDTMP is a good bone seeking radiopharmaceuticals.