• 제목/요약/키워드: bone resorption factor

검색결과 157건 처리시간 0.024초

흡수성 차폐막의 치주조직 재생에 혈소판유래 성장인자가 미치는 영향 (The Effect of PDGF-Loaded Biodegradable Membrane on Early Healing Stage in Guided Tissue Regeneration)

  • 류인철;배규현;설양조;구영;이승진;한수부;최상묵;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제29권3호
    • /
    • pp.507-519
    • /
    • 1999
  • The ultimate objective of periodontal treatment is to stop disease progression and to regenerate destroyed periodontal tissues and thereby regain normal function. Growth factors are naturally found polypetides which stimulate many cellular activities pertaining to wound healing by acting as signal molecule in controlling cell movement, proliferation, and matrix production. Platelet derived growth factor (PDGF) is 28,000-35,000 Da molecular weight dimeric protein with 2 long positively charged polypeptide chains connected by sulfide bonds. The purpose of this study is to evaluate histologically the initial guided tissue regeneration in a periodontal defect f a beagle dog treated with a biodegradable membrane formed with polylactic acid (poly-L-lactic acid) and polyglycolic acid loaded with 200ng/$cm^2$ platelet derived growth factor. 2 beagle dogs were used in he experiment. $5mm{\times}6mm$ alveolar bone defect was formed in upper and lower canines and third premolars and a reference notch was placed. PDGF-BB non-containing membrane was used as control. Each defect was randomly assigned to the test roup or the control group. The dogs were sacrificed 3 weeks after membrane placement. Toluidine blue and multiple staining was done for histological analysis. In the 3 week specimen in the control group, no new one formation could be seen. Small amount f bone resorption below the notch could be seen. In the notch, loose connective tissue with infiltration of inflammatory cells could be seen. Also thin discontinuous new cementum could be seen and the membrane still retained its structure. Where PDGF-BB containing membrane was used, new bone formation could be seen in the notch at weeks and also continuous thin cementum could be seen. PDL cells were observed between new bone and new cementum and some were attached to bone and cementum. These results suggest that new bone and cementum formation seen when PDGF-BB loaded membrane was used was due to inhibition of downgrowth of epithelial cells and also due to continuous release of the growth factor. Further study on the resorption characteristics of the membrane nd the release characteristics of the PDGF-BB is necessary. Also, development of a membrane easier to use clinically is necessary.

  • PDF

Deficiencies of Homer2 and Homer3 accelerate aging-dependent bone loss in mice

  • Kang, Jung Yun;Kang, Namju;Shin, Dong Min;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • 제45권3호
    • /
    • pp.126-133
    • /
    • 2020
  • Homer proteins are scaffold proteins that regulate calcium (Ca2+) signaling by modulating the activity of multiple Ca2+ signaling proteins. In our previous report, Homer2 and Homer3 regulated NFATc1 function through its interaction with calcineurin, which then acted to regulate receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone metabolism. However, to date, the role of Homers in osteoclastogenesis remains unknown. In this study, we investigated the roles of Homer2 and Homer3 in aging-dependent bone remodeling. Deletion of Homer2/Homer3 (Homer2/3 DKO) markedly decreased the bone density of the femur. The decrease in bone density was not seen in mice with Homer2 (Homer2-/-) and Homer3 (Homer3-/-) deletion. Moreover, RANKL treatment of bone marrow-derived monocytes/macrophages in Homer2/3 DKO mice significantly increased the formation of multinucleated cells and resorption areas. Finally, Homer2/3 DKO mice decreased bone density in an aging-dependent manner. These findings suggest a novel potent mode of bone homeostasis regulation through osteoclasts differentiation during aging by Homer proteins, specifically Homer2 and Homer3.

성장기 암컷 쥐에서 Arginine 첨가 식이가 골 대사 지표 및 호르몬에 미치는 영향 (Effects of Arginine Supplementation on Bone Markers and Hormones in Growing Female Rats)

  • 최미자
    • Journal of Nutrition and Health
    • /
    • 제40권4호
    • /
    • pp.320-326
    • /
    • 2007
  • An important related question is whether arginine has influence bone metabolism. The effect of arginine supplements on bone markers and related hormones were studied in young female Sprague-Dawley rats fed either an arginine supplemented diet or control diet. Twenty four rats (body weight 83${\pm}$5 g) were randomly assigned to one of two groups, consuming casein or casein with supplemented arginine diet. All rats were fed on experimental diet and deionized water ad libitum for 9 weeks. Bone formation was measured by serum osteocalcin and alkaline phosphatase (ALP) concentrations. And bone resorption rate was measured by deoxypyridinoline (DPD) crosslinks immunoassay and corrected for creatinine. Serum osteocalcin, growth hormone, estrogen, insulin-like growth factor-1 (IGF-1), parathyroid hormone (PTH) and calcitonin were analyzed using radioimmunoassay kits. The weight gain and mean food intake were not affected regardless of diets. The rats fed arginine-supplemented diet had not significantly different in ALP, osteocalcin, crosslinks value, PTH, estradiol, and IGF-1 compared to those fed casein diet group. The arginine-supplemented group had significantly higher growth hormone and calcitonin than casein group. This study suggests that arginine is beneficial for bone formation in growing female rats. Therefore exposure to diet which rich in arginine early in life may have benefits for bone formation and osteoporosis prevention.

Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis

  • Sul, Ok-Joo;Park, Hyun-Jung;Son, Ho-Jung;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.880-887
    • /
    • 2017
  • We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear $factor-{\kappa}B$ ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.

파괴된 치주조직의 재생촉진에 관한 연구 (A STUDY OF REGENERATION ENHANCEMENT OF DESTRUCTED PERIODONTAL TISSUE)

  • 한경윤
    • Journal of Periodontal and Implant Science
    • /
    • 제25권2호
    • /
    • pp.407-417
    • /
    • 1995
  • In order to evaluate the effect of platelet-derived growth factor(PDGF-BB) and guided tissue regeneration(GTR) technique on the regeneration of destructed periodontal tissue,intentional through-and-through furcation defects(4mm in height) were made on both mandibular 2nd and 4th premolars of 8 adult male dogs(30-40lb). Experimental group 1 was composed of the premolars that were treated by only topical application of PDGF-BB with 0.05M acetic acid without any barrier membrane. Experimental group 2 was composed of the premolars that were treated by GTR with expanded polytetrafluoroethylene membrane(ePTFE : Gore-tex periodontal material, USA). Experimental group 3 was composed of the premolars that were treated by GTR with ePTFE after topical application of PDGFBE. Control group was composed of the premolars that were treated by coronally positioned flap operation only without use of PDGF-BB and ePTFE membrane. All ePTFE membranes were carefully removed 4 weeks after regenerative surgery, and all experimental animals were sacrificed 8 weeks after regenerative surgery. The light microscopic findings were as follows ; (1) In experimental group 1, rapid new bone formation along the-root surface with multiple ankylosis and root resorption by multinucleated giant cells, and dense connective tissue in the central portion of the furcation defects were observed. (2) In experimental group 2, it was observed that the furcation defects were filled with newly formed bone, Sharpey's fibers were embedded into new cementum on root dentin of furcation fornix area, but the central portion and the area under furcation fornix were still filled with dense connective tissue. (3) In experimental group 3, the furcation defects were regenerated with newly formed dense bone and regular periodontal ligament with Sharpey's fibers embedded into newly formed cementum and bone underneath fornix area. (4) In control group, unoccupied space, apical migration of epithelium, dense infiltration of inflammatory cells in subepithelial connective tissue in relation to heavy plaque accumulation, and root resorption by inflammatory reaction were shown, but any new cementum formation on resorbed dentin surface could not be observed. The present study demonstrated that the combined therapy of PDGF-BB and GTR could enhance the regeneration of destructed periodontal tissue.

  • PDF

Effects of Interleukin-$1\beta$, Tumor Necrosis Factor-$\alpha$ and Interferon-$\gamma$ on the Nitric Oxide Production and Osteoclast Generation in the Culture of Mouse Bone Marrow Cells

  • Kwon, Young-Man;Kim, Se-Won;Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • 제31권2호
    • /
    • pp.67-72
    • /
    • 2006
  • Nitric oxide(NO) is a labile, uncharged, reactive radical that functions as a sensitive mediator of intercellular communication in diverse tissues. It has been reported that NO is produced by osteoblast and these results may suggest that NO is integrally involved in the regulation of osteoclast formation and osteoclast resorption activity by osteoblastic cells. We examined the effect of cytokines on NO release by mouse bone marrow cell. We also examined the effects of cytokines and sodium nitroprusside(SNP) on the formation of osteoclast-like cell from mouse bone marrow cells in culture. Cytokines stimulated NO production of mouse bone marrow cells, and N-nitro-L-arginine methyl ester, a specific inhibitor of NO synthase, suppressed the cytokine-induced NO production. SNP showed dual action in the generation of osteoclasts. The addition of $30{\mu}M$ SNP inhibited the formation of tartrate resistant acid phosphatase(TRAP)(+) multinucleated cell, whereas lower concentration($3{\mu}M$) of SNP enhanced it. Although the precise action of NO remains to be elucidated in detail, the action of NO in osteoclast generation in our studies seems to be associated, at least in part, with bone metabolism and bone pathophysiology.

보골지 추출물이 파골세포 분화 및 골흡수 관련 유전자 발현에 미치는 영향 (Psoraleae Semen Ethanol Extract Inhibits RANKL-Induced Osteoclast Differentiation and Osteoclast Specific Genes Expression)

  • 류광현;김엄지;김민선;김재현;이유진;진대환;손영주;정혁상
    • Korean Journal of Acupuncture
    • /
    • 제38권3호
    • /
    • pp.140-150
    • /
    • 2021
  • Objectives : The increase of osteoclasts could cause osteoporosis and bone-related diseases. Also, the inhibition of osteoclast differentiation is important in treating bone-related diseases. Traditionally, Psoraleae Semen has been used for geriatric diseases, aging and musculoskeletal diseases. The purpose of this study is to investigate the effect of Psoraleae Semen ethanol extract (PS) on osteoclast differentiation and its function. Methods : To confirm the effect of PS on osteoclastogenesis and bone resorption activity, various levels of concentrations of PS (5, 10, 20 and 40 ㎍/ml) were tested on RAW 264.7 cells cultured with RANKL. We measured tartarate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity, pit formation and F-actin ring formation. The expressions of nuclear factor of activated T-cells (NFATc1) and c-Fos were confirmed through western blot and reverse transcription- polymerase chain reaction (RT-PCR). Also, the expression of bone resorption and fusion-related genes in osteoclast was confirmed by RT-PCR. Results : PS decreased the number of TRAP-positive cells and the TRAP activity. In addition, PS significantly inhibited the formation of pit and F-actin ring. Furthermore, PS decreased the expression of osteoclast related genes. Conclusions : PS inhibits osteoclast differentiation and bone resorption ability through inhibition of the expression of osteoclast-related genes. This indicates that PS may be a potential therapeutic agent to osteoporosis by suppressing osteoclastogenesis.

Microphthalmia-associated Transcription Factor Polymorphis and Association with Bone Mineral Density of the Proximal Femur in Postmenopausal Women

  • Koh, Jung-Min;Kim, Ghi Su;Oh, Bermseok;Lee, Jong Yong;Park, Byung Lae;Shin, Hyoung Doo;Hong, Jung Min;Kim, Tae-Ho;Kim, Shin-Yoon;Park, Eui Kyun
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.246-251
    • /
    • 2007
  • Osteoporosis is a common metabolic bone disease characterized by low bone mineral density (BMD) with an increased risk of fracture. Low bone mass results from an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts. Microphthalmia-associated transcription factor (MITF) plays a critical role in osteoclast development and thus is an important candidate gene affecting bone turnover and BMD. In order to investigate the genetic effects of MITF variations on osteoporosis, we directly sequenced the MITF gene in 24 Koreans, and identified fifteen sequence variants. Two polymorphisms (+227719C > T and +228953A > G) were selected based on their allele frequencies, and then genotyped in a larger number of postmenopausal women (n = 560). Areal BMD ($g/cm^2$) of the anterior-posterior lumbar spine and the non-dominant proximal femur was measured by dual-energy X-ray absorptiometry. We found that the MITF + 227719C > T polymorphism was significantly associated with low BMD of the trochanter (p = 0.005-0.006) and total femur (p = 0.02-0.03) (codominant and dominant models), while there was no association with BMD of the lumbar spine. The MITF+228953A > G polymorphism was also associated with low BMD of the femoral shaft (p = 0.05) in the recessive model. Haplotype analysis showed that haplotype 3 of the MITF gene (MITF-ht3) was associated with low BMD of the trochanter (p = 0.03-0.05) and total femur (p = 0.05) (dominant and codominant models). Our results suggest that MITF variants may play a role in the decreased BMD of the proximal femur in postmenopausal women.

Rev-erbα Negatively Regulates Osteoclast and Osteoblast Differentiation through p38 MAPK Signaling Pathway

  • Kim, Kabsun;Kim, Jung Ha;Kim, Inyoung;Seong, Semun;Kim, Nacksung
    • Molecules and Cells
    • /
    • 제43권1호
    • /
    • pp.34-47
    • /
    • 2020
  • The circadian clock regulates various physiological processes, including bone metabolism. The nuclear receptors Reverbs, comprising Rev-erbα and Rev-erbβ, play a key role as transcriptional regulators of the circadian clock. In this study, we demonstrate that Rev-erbs negatively regulate differentiation of osteoclasts and osteoblasts. The knockdown of Rev-erbα in osteoclast precursor cells enhanced receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation, as well as expression of nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor (OSCAR), and tartrate-resistant acid phosphatase (TRAP). The overexpression of Rev-erbα leads to attenuation of the NFATc1 expression via inhibition of recruitment of c-Fos to the NFATc1 promoter. The overexpression of Rev-erbα in osteoblast precursors attenuated the expression of osteoblast marker genes including Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OC). Rev-erbα interfered with the recruitment of Runx2 to the promoter region of the target genes. Conversely, knockdown of Rev-erbα in the osteoblast precursors enhanced the osteoblast differentiation and function. In addition, Rev-erbα negatively regulated osteoclast and osteoblast differentiation by suppressing the p38 MAPK pathway. Furthermore, intraperitoneal administration of GSK4112, a Rev-erb agonist, protects RANKL-induced bone loss via inhibition of osteoclast differentiation in vivo. Taken together, our results demonstrate a molecular mechanism of Rev-erbs in the bone remodeling, and provide a molecular basis for a potential therapeutic target for treatment of bone disease characterized by excessive bone resorption.

고혈압을 동반한 만성 치주염 환자의 치은 조직에서 C-reactive protein과 macrophage colony-stimulating factor의발현 (The expressions of C-reactive protein and macrophage colony-stimulating factor in gingival tissue of human chronic periodontitis with hypertension)

  • 김철우;박진우;서조영;조제열;이재목
    • Journal of Periodontal and Implant Science
    • /
    • 제39권4호
    • /
    • pp.391-398
    • /
    • 2009
  • Purpose: The purpose of this study was to quantify and compare the expressions of CRP and M-CSF in the gingival tissues of the patients with chronic periodontitis associated to hypertension. Methods: Gingival tissue samples were obtained during periodontal surgery or tooth extraction. Clinically healthy gingival tissue samples from systemically healthy 12 patients were categorized as group 1 (n=12). Inflammatory gingival tissue samples from patients with chronic periodontitis were categorized as group 2 (n=12). Inflammatory gingival tissue samples from patients with chronic periodontitis associated with hypertension were categorized as group 3 (n=12). Tissue samples were prepared and analyzed by Western blotting. The quantification of CRP and M-CSF were performed using a densitometer and statistically analyzed by one-way ANOVA followed by Tukey test. Results: There were significant differences between group 1 and group 2 and between group 1 and group 3 in both CRP and M-CSF. The differences between group 2 and group 3 were not statistically significant in both proteins. However, the expression levels of CRP and M-CSF in hypertensive inflammatory gingiva showed increased tendency compared to non-hypertensive inflammatory gingiva. Conclusions: It is suggested that CRP and M-CSF might be used as inflammatory and bone resorption markers in periodontal diseased tissue. It is assumed that hypertension may be associated with the progression of periodontal inflammation and alveolar bone resorption.