• Title/Summary/Keyword: bone morphogenetic protein 7

Search Result 67, Processing Time 0.032 seconds

Expression and Purification of Recombinant Human Bone Morphogenetic Protein-7 (rhBMP-7) in Bacillus subtilis (고초균을 이용한 재조합 인간 골 형성 단백질-7의 발현과 정제)

  • Kim, Chun-Kwang;Oh, Sung-Duk;Rhee, Jong-Il
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.257-264
    • /
    • 2010
  • Bone morphogenetic protein-7 (BMP-7) is one of important growth factors for skeletal development and bone growth. In this work, BMP-7 was efficiently expressed in recombinant Bacillus subtilis. The mature BMP-7 protein indicated molecular weight of 15.4 kDa by Western blot assay and was secreted into culture medium with 0.35 ng/mL. The extracellular and intracellular rhBMP-7 proteins were purified by using a FPLC system with an ion exchange column and a gel filtration column. The extracellular and intracellular rhBMP-7 proteins had finally a 57.1% purity and a 36.2% purity, respectively. The purified rhBMP-7 proteins showed an intact biological activity which stimulated alkaline phophatase (ALP) activity in MC3T3-E1 cells.

Ulnar Radial Nonunion Fracture Treated with Recombinant Human Bone Morphogenetic Protein-2 in a Dog (개의 요.척골유합부전의 Recombinant Human Bone Morphogenetic Protein-2 적용 치료례)

  • 홍성혁
    • Journal of Veterinary Clinics
    • /
    • v.18 no.2
    • /
    • pp.156-159
    • /
    • 2001
  • A 6-year-old male mongrel dog with a 7-month history of ulnar-radial nonunion fracture was treated with implantation of recombinant human bone morphogenetic protein-2 (rhBMP-2). The dog had received surgical correction three times prior to the admission but radiography of the affected limb revealed a typical figure of nonunion fracture. Glossly, the fractured ends were sclerotic and the area between the ends was filled with fibrous tissue. After debridement the shaft was fixed by an 10-hole plate. rhBMP-2 at a total dose of 256 micrograms was implanted with a synthetic carrier into the 10-mm defect formed by the debridement. Callus formation responding to rhBMP-2 was radiographically observed at 4 weeks after implantation and the defect bridged both fracture ends by 8 weeks after implantation. The plate was removed at 12 months after implantation. Any complications were not observed for 5 months after removal of the plate.

  • PDF

Effect of combinatorial bone morphogenetic protein 2 and bone morphogenetic protein 7 gene delivery on osteoblastic differentiation

  • Bae, Young;Kim, Kyoung-Hwa;Kim, Su-Hwan;Lee, Chul-Woo;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.279-286
    • /
    • 2009
  • Purpose: Gene therapy (ex vivo) has recently been used as a means of delivering bone morphogenetic proteins (BMPs) to sites of tissue regeneration. In the present study, we investigated the effect of co-transduction of adenoviruses expressing BMP-2 and BMP-7 on osteogenesisof C2C12 cells in vitro. Methods: A replication-defective human adenovirus 5 (Ad5) containing a cDNA for BMPs in the E1 region of the virus (Ad5BMP-2 and Ad5BMP-7) was constructed by in vivo homologous recombination. Functional activity of Ad5BMP-2 and Ad5BMP-7 were evaluated in mouse stromal cells (W20-17cells). C2C12 cells are transduced with various MOI (multiplicity of infection) of Ad5BMP-2 and Ad5BMP-7 to assess most effective and stable titer. Based on this result, C2C12 cells were transduced with Ad5BMP-2 and Ad5BMP-7 alone or by combination. BMPs expression, alkaline phosphatase (ALPase) activity, cell proliferation, and mineralization were assessed. Results: Ad5BMP-2 and Ad5BMP-7 are successfully transduced to W20-17 cells, and secreted BMPs stimulated cell differentiation. Also, C2C12 cells transduced with Ad5BMPs showed expression of BMPs and increased ALPaseactivity. In all groups, cell proliferation was observed over times. At 7days, cells co-transduced with Ad5BMP-2 and Ad5BMP-7 showed lower proliferation than the others. C2C12 cells co-transduced with Ad5BMP-2 and Ad5BMP-7 had greater ALPaseactivity than that would be predicted if effect of individual Ad5BMPs were additive. Little mineralized nodule formation was detected in cells transduced with individual Ad5BMPs. In contrast, Ad5BMP-2 and Ad5BMP-7 combination stimulated mineralization after culturing for 10 days in mineralizing medium. Conclusions: Present study demonstrated that adenoviruses expressing BMPs gene successfully produced BMPs protein and these BMPs stimulated cells to be differentiated into osteoblastic cells. In addition, the osteogenic activity of Ad5BMPs can be synergistically increased by co-transduction of cells with Ad5BMP-2 and Ad5BMP-7.

Expression, Refolding, and Characterization of the Proteolytic Domain of Human Bone Morphogenetic Protein 1 (뼈형성 단백질(Bone Morphogenetic Protein 1)의 단백질 분해 부위의 발현 및 특성 연구)

  • ;Daihung Do
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.218-227
    • /
    • 2000
  • Bone morphogenetic protein 1 (BMP-1) is part of a complex capable of inducing ectopic bone formation in mammals. Studies on TGF-β1 processing and Drosophila dorsal-ventral patterning have focused attention on BMP-1 as important in mediating the biological activity of this bone inducing complex. Herein, the bacterial expression, refolding, purification, and initial characterization of the BMP-1 proteolytic domain (BPD) are described. A semi-quantitative fluorescence-based thin layer chromatography assay was developed to assist in rapidly screening for optimal renaturation conditions. According to a preliminary screen for optimal conditions for the refolding of BPD , a detectable proteolytic activity against a high turnover substrate for astacin, a homologous protease from crayfish was observed. The conditions identified have allowed the expression of sufficient amounts of BPD for the characterization of the protein. Its proteolytic activity exhibits the same cleavage specificity as astacin against seven substrates that were previously synthesized for studying astacin. Furthermore, this activity is inhibited by the metal chelator 1,10-phenanthroline but not by its analogue 1,7-phenanthroline. The collagenase inhibitor Pro-Leu-Gly hydroxamate was found to inhibit both astacin and BPD activity. The results presented in this paper argue that BMP-1 does in fact possess an intrinsic proteolytic activity.

  • PDF

Emodin stimulates the osteoblast differentiation via activating bone morphogenetic protein-2 gene expression at low concentration

  • Cheon, Myeong-Sook;Lee, Su-Ui;Kim, Ho-Kyoung;Kim, Young-Sup;Min, Yong-Ki;Kim, Seong-Hwan
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.1 s.19
    • /
    • pp.139-145
    • /
    • 2007
  • Emodin is one of the main active components of a traditional Korean medicine isolated from the root and rhizomes of Rheum palmatum L. In this study, of 222 natural compounds to evaluate the anabolic activities, emodin activated bone morphogenetic protein (BMP)-2 promoter in the differentiation process of mouse osteoblastic MC3T3-E1 cells. Emodin was shown to significantly stimulate the activity and expression of alkaline phosphatase, an earlyphase marker of osteoblastic differentiation, on the differentiation day 7, and induce the osteopontin mRNA expression from the differentiation day 14. In addition, low concentration (up to 5 M) of emodin dramatically promoted the induction of mineralization in MC3T3-E1 subclone 4 cells. The stimulatory effect of emodin on the osteoblast differentiation/mineralization could be associated with its potential to stimulate the BMP-2 gene expression. Although further studies are needed to determine the precise mechanism, this study suggests that the use of herbal medicine containing natural compounds with anabolic activity such as emodin could have a beneficial effect on bone health.

  • PDF

A Study of the Effects of Bone Morphogenetic Protein on the Characteristics of Rat Periodontal Ligament and Calvaria Cells (골형태형성단백질이 백서치주인대세포와 두개관세포에 미치는 영향)

  • Choi, Jin-Keun;Lee, Man-Sup;Kwon, Young-Hyuk;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.4
    • /
    • pp.765-785
    • /
    • 1999
  • Bone morphogenetic protein-2/4 (BMP-2/4) are members of Transforming Growth $Factor-{\beta}\;(TGF-{\beta})$ superfamily and they may differentiate the osteoprogenitor cell and induce formation of cartilage and bone in vivo. This study was performed to investigate the effects of bone morphogenetic protein-2/4 on the characteristics of rat periodontal ligament cells(RPDL) and rat calvaria cells(RCV). In the control group, the cells were cultured alone with Dulbeco's Modified Eagle's Medium contained with 20% fetal bovine serum, $100{\mu}/ml$ penicillin, $100{\mu}/ml$ streptomycin. In the experimental groups, recombinant human bone morphogenetic protein-2/4 (25ng, 100ng, 250ng/ml) were added into the above culture condition. And then each group was characterized by examing the cell proliferation at 1, 2, 3, 5, 7th day, the amount of total protein synthesis and alkaline phosphatase activity at 2, 5, 7th day. And also, the calcified nodule was examed. The results were as follows ; 1 . Both RCV and RPDL cells in both control and experimental groups proliferated during the entire experimental period, but there is no stastically significant difference according to the BMP-2/4 concentration. 2 . Amount of total protein synthesis of both cells in both groups was steadily increased until 5th day, but all experimental groups were significantly different from the control group at 7th day. 3. Alkaline phosphatase activity of both cells in both groups was increased during the entire experiment period. In RCV cells, the experimental group treated with 100ng/ml and 250ng/ml BMP-2/4 were significantly different from the control group at 7th day. In RPDL cells, the experimental group treated with 100ng/ml and 250ng/ml BMP-2/4 were significantly different from the control group at 5th day, and all experimental groups were significantly different from the control group at 7th day. 4. In the both of the cultured Rat Periodontal ligament and calvaria cell treated with BMP-2/4 to compared with control group, it revealed more rapid cell polarization, cell aggregation and hyperchromatic stained on HE agent, and even though only 1 day treated with BMP-2/4 both RPDL and RCV showed more rapid cell reaction than control group. More sensivitve cell reaction of RCV were observed than RPDL in this experiment. From the above results, we could conclude that BMP-2/4 influenced the induction, proliferation and differentiation of bone forming cells

  • PDF

Optimization of Extracellular Production of Recombinant Human Bone Morphogenetic Protein-7 (rhBMP-7) with Bacillus subtilis

  • Kim, Chun-Kwang;Rhee, Jong Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.188-196
    • /
    • 2014
  • Extracellular production of recombinant human bone morphogenetic protein-7 (rhBMP-7) was carried out through the fermentation of Bacillus subtilis. Three significant fermentation conditions and medium components were selected and optimized to enhance the rhBMP-7 production by using the response surface methodology (RSM). The optimum values of the three variables for the maximum extracellular production of rhBMP-7 were found to be 2.93 g/l starch, 5.18 g/l lactose, and a fermentation time of 34.57 h. The statistical optimization model was validated with a few fermentations of B. subtilis in shake flasks under optimized and unoptimized conditions. A 3-L jar fermenter using the shake-flask optimized conditions resulted in a higher production (413 pg/ml of culture medium) of rhBMP-7 than in a shake flask (289.1 pg/ml), which could be attributed to the pH being controlled at 6.0 and constant agitation of 400 rpm with aeration of 1 vvm.

Response of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2

  • Han, Seung-Hee;Kim, Kyoung-Hwa;Han, Jung-Seok;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.227-233
    • /
    • 2011
  • Purpose: The aim of this study was to compare osteoblast behavior on zirconia and titanium under conditions cultured with bone morphogenetic protein-2. Methods: MC3T3-E1 cells were cultured on sandblasted zirconia and sandblasted/etched titanium discs. At 24 hours after seeding MC3T3-E1, the demineralized bone matrix (DBM) gel alone and the DBM gel with bone morphogenetic protein-2 (BMP-2) were added to the culture medium. The surface topography was examined by confocal laser scanning microscopy. Cellular proliferation was measured at 1, 4, and 7 days after gel loading. Alkaline phosphatase activity was measured at 7 days after gel loading. The mRNA expression of ALPase, bone sialoprotein, type I collagen, runt-related transcription factor 2 (Runx-2), osteocalcin, and osterix were evaluated by real-time polymerase chain reaction at 4 days and 7 days. Results: At 1, 4, and 7 days after loading the DBM gel alone and the DBM gel with BMP-2, cellular proliferation on the zirconia and titanium discs was similar and that of the groups cultured with the DBM gel alone and the DBM gel with BMP-2 was not significantly different, except for titanium with BMP-2 gel. ALPase activity was higher in the cells cultured with BMP-2 than in the other groups, but there was no difference between the zirconia and titanium. In ALPase, bone sialoprotein, osteocalcin, Runx-2 and osterix gene expression, that of cells on zirconia or titanium with BMP-2 gel was much more highly increased than titanium without gel at day 7. The gene expression level of cells cultured on zirconia with BMP-2 was higher than that on titanium with BMP-2 at day 7. Conclusions: The data in this study demonstrate that the osteoblastic cell attachment and proliferation of zirconia were comparable to those of titanium. With the stimulation of BMP-2, zirconia has a more pronounced effect on the proliferation and differentiation of the osteoblastic cells compared with titanium.

Combined effect of bisphosphonate and recombinant human bone morphogenetic protein 2 on bone healing of rat calvarial defects

  • Kim, Ho-Chul;Song, Jae-Min;Kim, Chang-Joo;Yoon, Sang-Yong;Kim, In-Ryoung;Park, Bong-Soo;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.16.1-16.7
    • /
    • 2015
  • Background: This study aimed to investigate new bone formation using recombinant human bone morphogenetic protein 2 (rhBMP-2) and locally applied bisphosphonate in rat calvarial defects. Methods: Thirty-six rats were studied. Two circular 5 mm diameter bony defect were formed in the calvaria using a trephine bur. The bony defect were grafted with $Bio-Oss^{(R)}$ only (group 1, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 (group 2, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 1 mM alendronate (group 3, n = 9) and $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 10 mM alendronate (group 4, n = 9). In each group, three animals were euthanized at 2, 4 and 8 weeks after surgery, respectively. The specimens were then analyzed by histology, histomorphometry and immunohistochemistry analysis. Results: There were significant decrease of bone formation area (p < 0.05) between group 4 and group 2, 3. Group 3 showed increase of new bone formation compared to group 2. In immunohistochemistry, collagen type I and osteoprotegerin (OPG) didn't show any difference. However, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) decreased with time dependent except group 4. Conclusion: Low concentration bisphosphonate and rhBMP-2 have synergic effect on bone regeneration and this is result from the decreased activity of RANKL of osteoblast.

Expression and Purification of Biologically Active Human Bone Morphogenetic Protein-4 in Recombinant Chinese Hamster Ovary Cells

  • Cha, Minyub;Han, Nara;Pi, Jia;Jeong, Yongsu;Baek, Kwanghee;Yoon, Jaeseung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1281-1287
    • /
    • 2017
  • Bone morphogenetic protein-4 (BMP-4) is considered to have therapeutic potential for various diseases, including cancers; however, the high expression of biologically active recombinant human BMP-4 (rhBMP-4) needed for its manufacture for therapeutic purposes has yet to be established. In the current study, we established a recombinant Chinese hamster ovary (rCHO) cell line overexpressing rhBMP-4 as well as a production process using 7.5-l bioreactor (5 L working volume). The expression of the mature rhBMP-4 was significantly enhanced by recombinant furin expression. The combination of a chemically defined medium and a nutrient supplement solution for high expression of rhBMP-4 was selected and used for bioreactor cultures. The 11-day fed-batch cultures of the established rhBMP-4-expressing rCHO cells in the 7.5-L bioreactor produced approximately 32 mg/l of rhBMP-4. The mature rhBMP-4 was purified to homogeneity from the culture supernatant using a two-step chromatographic procedure, resulting in a recovery rate of approximately 55% and a protein purity greater than 95%. The N-terminal amino acid sequences and N-linked glycosylation of the purified rhBMP-4 were confirmed by N-terminal sequencing and de-N-glycosylation analysis, respectively. The mature purified rhBMP-4 has been proved to be functionally active, with an effective dose concentration of $EC_{50}$ of 2.93 ng/ml.