• 제목/요약/키워드: bone morphogenetic protein (BMP) signal

검색결과 9건 처리시간 0.02초

Bone Morphogenetic Protein 2-induced MAPKs Activation Is Independent of the Smad1/5 Activation

  • Jun, Ji-Hae;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제34권2호
    • /
    • pp.115-121
    • /
    • 2009
  • Bone morphogenetic protein (BMP) 2 is a potent osteogenic factor. Although both Smad1/5 and mitogenactivated protein kinases (MAPKs) are activated by BMP2, the hierarchical relationship between them is unclear. In this study, we examined if BMP2-stimulated MAPK activation is regulated by Smad1/5 or vice versa. When C2C12 cells were treated with BMP2, the activation of extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun-N-terminal kinase was evident within 5 min. The knockdown of both Smad1 and Smad5 by small interfering RNA did not affect the activation of these MAPKs. In addition, neither the overexpression of Smad1 nor Smad5 induced ERK activation. When ERK activation was induced by constitutively active MEK1 expression, the protein level and activation of Smad1 increased. Furthermore, the inhibition of constitutively active BMP receptor type IB-induced ERK activation significantly suppressed Smad1 activation. These results indicate that Smad1/5 activation is not necessary for BMP2-induced MAPK activation and also that ERK positively regulates Smad1 activation.

Alk3/Alk3b and Smad5 Mediate BMP Signaling during Lymphatic Development in Zebrafish

  • Kim, Jun-Dae;Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.270-274
    • /
    • 2014
  • Lymphatic vessels are essential to regulate interstitial fluid homeostasis and diverse immune responses. A number of crucial factors, such as VEGFC, SOX18, PROX1, FOX2C, and GJC2, have been implicated in differentiation and/or maintenance of lymphatic endothelial cells (LECs). In humans, dysregulation of these genes is known to cause lymphedema, a debilitating condition which adversely impacts the quality of life of affected individuals. However, there are no currently available pharmacological treatments for lymphedema, necessitating identification of additional factors modulating lymphatic development and function which can be targeted for therapy. In this report, we investigate the function of genes associated with Bone Morphogenetic Protein (BMP) signaling in lymphatic development using zebrafish embryos. The knock-down of BMP type II receptors, Bmpr2a and Bmpr2b, and type I receptors, Alk3 and Alk3b, as well as SMAD5, an essential cellular mediator of BMP signaling, led to distinct lymphatic defects in developing zebrafish. Therefore, it appears that each constituent of the BMP signaling pathway may have a unique function during lymphatic development. Taken together, our data demonstrate that BMP signaling is essential for normal lymphatic vessel development in zebrafish.

Characteristics of contact and distance osteogenesis around modified implant surfaces in rabbit tibiae

  • Choi, Jung-Yoo;Sim, Jae-Hyuk;Yeo, In-Sung Luke
    • Journal of Periodontal and Implant Science
    • /
    • 제47권3호
    • /
    • pp.182-192
    • /
    • 2017
  • Purpose: Contact and distance osteogenesis occur around all endosseous dental implants. However, the mechanisms underlying these processes have not been fully elucidated. We hypothesized that these processes occur independently of each other. To test this, we used titanium (Ti) tubes to physically separate contact and distance osteogenesis, thus allowing contact osteogenesis to be measured in the absence of possible triggers from distance osteogenesis. Methods: Sandblasted and acid-etched (SLA) and modified SLA (modSLA) implants were used. Both types had been sandblasted with large grit and then etched with acid. The modSLA implants then underwent additional treatment to increase hydrophilicity. The implants were implanted into rabbit tibiae, and half were implanted within Ti tubes. The bone-to-implant contact (BIC) ratio was calculated for each implant. Immunohistochemical analyses of bone morphogenetic protein (BMP)-2 expression and new bone formation (Masson trichrome stain) were performed. Results: The implants outside of Ti tubes were associated with good bone formation along the implant surface. Implantation within a Ti tube significantly reduced the BIC ratio (P<0.001). Compared with the modSLA implants, the SLA implants were associated with significantly higher BIC ratios, regardless of the presence or absence of Ti tubes (P=0.043). In the absence of Ti tubes, the bone adjacent to the implant had areas of new bone formation that expressed BMP-2 at high levels. Conclusions: This study disproved the null hypothesis and suggested that contact osteogenesis is initiated by signals from the old bone that undergoes distance osteogenesis after drilling. This signal may be BMP-2.

Epithelial-Mesenchymal Interactions for the Development of Intestinal Villi

  • Oh, Seunghoon;Yoo, Young Bok
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권4호
    • /
    • pp.305-311
    • /
    • 2019
  • Small intestine has a structure called villi that increases the mucosal surface area for nutrient absorption. Intricate and tight epithelial-mesenchymal interactions are required for villi development. These interactions are regulated by signaling molecules, physical forces, and epithelial deformation. Signaling molecules include hedgehog (Hh), bone morphogenetic protein (BMP) and Wnt ligands. The Hh ligand is expressed from the epithelium and binds to the underlying mesenchymal cells, resulting in aggregation into mesenchymal clusters. The clusters express BMP and Wnt ligands to control its size and spacing between clusters. The clusters then form villi. Despite the fact that the villi formation is studied extensively, we do not have a complete understanding. In addition, the recent study shows there is a great relationship between the overexpression of the Hh signal and development of cancer in the gastrointestinal tract. Therefore, signaling between epithelial and mesenchymal cells and their physical interactions will be discussed on this review.

심근세포로의 분화에 관여하는 새로운 생리활성 단백질 SPP2의 발굴 (Identification and Characterization of Secreted Phosphoprotein 2 as a Novel Bioactive Protein for Myocardial Differentiation)

  • 전세진
    • 생명과학회지
    • /
    • 제33권1호
    • /
    • pp.64-72
    • /
    • 2023
  • 심장 발생과정에 관여하는 주요 전사인자들의 기능에 대한 규명 등의 발전에도 불구하고 줄기 세포에서 매우 효율적인 심근 세포로의 분화를 촉진하는 새로운 생체 활성 분자를 찾는 것이 여전히 필요하다. 마우스배아줄기세포(mESC) 유래 심근세포의 Illumina 발현 마이크로어레이 데이터를 분석하였다. 미분화 mESCs와 비교하여 mESC 유래 심근세포에서 4배 이상 유전자 발현이 증가한 276개 유전자가 스크리닝되었다. Secreted phosphoprotein 2 (Spp2)는 후보물질 중 하나이며 bone morphogenetic protein 2 (BMP2)에 대한 슈도수용체로서 BMP2 신호 전달을 억제하는 것으로 알려져 있다. 그러나 심근 형성과의 연관성은 알려진 바 없다. 우리는 mESC 세포주인 TC-1/Kh2와 E14를 이용하여 기능성 심근세포로 분화하는 동안 Spp2 발현이 증가함을 검증하였다. 흥미롭게도, Spp2 분비는 배아체(embryoid body, EBs) 형성 후 3일차에 일시적으로 증가했는데, 이는 Spp2의 분비가 ESCs의 심근세포로의 분화에 관여함을 시사한다. Spp2의 기능을 분석하기 위해, 우리는 BMP2를 처리하면 분화 경로를 근모세포에서 골모세포로 전환되는 특성을 가진 C2C12 마우스 근모세포 세포주를 사용하여 실험을 수행하였다. mESCs의 분화와 유사하게, Spp2의 전사는 C2C12 근모세포가 근관으로 분화됨에 따라 증가하였다. 특히, 분화 초기 단계에서 Spp2의 세포외 분비가 극적으로 증가하였다. 또한, Spp2-Flag 재조합 단백질로 처리하면 C2C12 근모세포의 근관으로의 분화가 촉진되었다. 종합하면, ESCs를 심근 세포로 분화시키는 새로운 생체 활성 단백질로 Spp2를 제안한다. 이것은 심근형성의 분자 경로를 이해하고 허혈성 심장질환에 대한 줄기세포 요법의 실험적 또는 임상적 발전을 촉진하는 역할을 할 것으로 기대한다.

치아 기관배양시 골형성단백의 역할에 관한 연구 (THE ROLE OF BONE MORPHOGENETIC PROTEIN IN THE TOOTH CULTURE)

  • 정일혁;정종훈;정필훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권5호
    • /
    • pp.438-443
    • /
    • 2004
  • Objectives : The proper development of the facial structures relies upon a sequence of tightly regulated signaling interactions between the ectoderm and mesoderm involving the participation of several families of signaling molecules. Among these, bone morphogenetic proteins (BMPs) have been suggested to be a key signal that regulates the development of the mandible and the initiation and morphogenesis of the teeth. The aim of this study was to examine the artificial development of the mandibular structures and to examine the role of BMPs on tooth morphogenesis and differentiation using an organ culture system. Materials and Methods : The tooth germs from Ed 11.5, 13.5 mice were dissected, and transplanted into the diastema of the mandible primordia. The mandibles containing the transplanted tooth germs were cultured in vitro. During this period, beads soaked with BMP4 were implanted around the transplanted tooth germs. In addition, a diastema block containing the transplanted tooth germ was dissected, then transferred to an adult mouse kidney. After the organ culture, the developing mandibular explant was removed from the kidney and prepared for the tissue specimens. Odontogeneis of the transplanted tooth germs was examined after Hematoxylin-eosin, Masson-trichrome staining. Results : Proliferation and differentiation of the tooth germs cultured in the diastema was observed. In the BMP4-treated tooth germs, the formation of the first and second molars was noted. The crown of the developing tooth showed the formation of a mature cusp with the deposition of enamel and dentin matrix. In conclusion, it was confirmed that BMP4 is involved in the formation of a dental crown and the differentiation of ameloblasts and odontoblasts of the molar tooth during the development of the transplanted tooth germs.

Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2

  • Kim, Myung-Jin;Park, Seon Young;Chang, Hae Ryung;Jung, Eun Young;Munkhjargal, Anudari;Lim, Jong-Seok;Lee, Myeong-Sok;Kim, Yonghwan
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.308-317
    • /
    • 2017
  • Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth $factor-{\beta}$ ($TGF-{\beta}$) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.

발효 시금치 추출물의 무기인산염에 의해 유도된 혈관 석회화 저해 효과 (Inhibitory Effect of Fermented Spanish Extract on Inorganic phosphate-induced Vascular Calcification in ex vivo Aortic Rings)

  • 이상희;홍선미;성미정
    • 한국식생활문화학회지
    • /
    • 제37권3호
    • /
    • pp.248-255
    • /
    • 2022
  • Spinach (Spinacia oleracea L.), a green leafy vegetable, is well known as a functional food due to its biological activities. Vascular calcification is associated with several disease conditions including atherosclerosis, diabetes, and chronic kidney disease (CKD), and is known to raise the risk of cardiovascular diseases related morbidity and mortality. However, there are no previous studies that have investigated the effects of fermented spinach exract (FSE) against aortic and its underlying mechanisms. Therefore, this study investigated the effects and action of possible mechanisms of FSE on inorganic phosphate (PI)-induced vascular calcification in ex vivo mouse aortic rings. PI increased vascular calcification through calcium deposition in ex vivo aortic rings. FSE inhibited calcium accumulation and osteogenic key marker, runt-related transcription factor 2 (Runx2), and bone Morphogenetic Protein 2 (BMP-2) protein expression in ex vivo aortic rings. And, FSE inhibited PI-induced extracellular signal-regulated kinase (ERK) and p38 phosphorylation in ex vivo aortic rings. These results show that FSE can prevent vascular calcification which may be a crucial way for the prevention and treatment of vascular disease association with vascular calcification.

Smad에 의한 alkaline phosphatase 유전자의 발현 조절기전 (THE EFFECT OF BMP REGULATED SMAD PROTEIN ON ALKALINE PHOSPHATASE GENE EXPRESSION)

  • 김난진;류현모;김현정;김영진;남순현
    • 대한소아치과학회지
    • /
    • 제28권2호
    • /
    • pp.238-246
    • /
    • 2001
  • 본 실험은 탁월한 골유도능으로 관심의 대상이 되고 있는 BMP의 세포내 신호 전달자로 알려진 Smad 1과 Smad 5가 조골세포 초기 분화표지인자인 ALP 유전자의 발현에 미치는 영향 및 그 조절기전을 알아보고자 하였다. BMP 처리 없이도 Smad에 의해 ALP가 발현되는가를 알아보기 위해 Smad 1과 Smad 5가 각각 stably transfection된 C2C12 세포를 3일간 배양후 histochemical assay를 하였고, Smad 1과 Smad 5의 expression vector와 ALP promoter vector를 transient co-transfection한 후 ALP promoter activity를 측정하였다. Smad에 의한 BMP의 효과를 알아보기 위해서 100ng/ml의 BMP-2를 처리한 군과 처리하지 않은 군으로 나누어 세포를 배양한후 ALP 유전자의 발현을 northern blot analysis로 확인 하였다. Smad가 ALP 유전자의 발현을 직접적으로 조절하는가를 알아보기 위해서는 단백질 합성억제제인 cycloheximide를 전처리하여 ALP 유전자의 발현을 northern blot analysis하였다. 이상의 실험결과 다음과 같은 결론을 얻었다. $\cdot$ Smad 1과 Smad 5가 과발현된 세포에서는 BMP 처리없이도 ALP가 발현된다. $\cdot$ Smad 1과 Smad 5가 과발현된 세포에서 BMP 처리후 ALP 발현 증가율이 대조군 보다 현저히 높게 나타나 Smad가 BMP 효과를 증가시킨다는 것을 알 수 있다. $\cdot$ Smad는 새로운 단백질의 합성을 통해 ALP 유전자를 발현시킨다.

  • PDF