• 제목/요약/키워드: bone disease

검색결과 1,465건 처리시간 0.032초

녹색 이구아나(Iguana iguana)에서의 대사성 골질환 (Metabolic Bone Disease in Green iguana (Iguana iguana))

  • 황철용;윤화영;윤정희;한홍율
    • 한국임상수의학회지
    • /
    • 제18권3호
    • /
    • pp.265-268
    • /
    • 2001
  • Metabolic bone disease was diagnosed in 2 green iguanas hospitalized in Veterinary Medical Teaching Hospital of Seoul National University. Treatments were focused on initially correcting of husbandry with attention being paid to diet, increasing UV exposure time and increasing temperature of aquarium. Calcium complex was injected intramuscularly one time and administered calcium powder orally. Treatments responses were good with recovering body condition and increasing plasma Ca level.

  • PDF

치주 질환을 동반한 상악 정중이개(diastema)환자에 있어 치주-교정-보철 치료의 치험 증례 보고

  • 김태훈;이승희
    • 대한치과의사협회지
    • /
    • 제36권11호통권354호
    • /
    • pp.794-799
    • /
    • 1998
  • Many references report that abnormal diastema except temporary diastema existing in mixed dentition period is caused by maxilary heavy labial frenum, malocclusion, progressive periodontal disease, and loss of posterior teeth. We can diagnose patient as diastema caused by periodontal disease, especially, in case of accompanying progressively destructed anterior maxillary alveolar bone defect, and interseptal bone defect. We report Multiple disciplinary approach for diastema associated with periodontal disease. Periodontal treatment(Guided Tissue -Regeneration, alveoloplasty, bone graft), or thodontic treatment (space closure, redistribution), and the final proshodontic restoration for retention were used.

  • PDF

Effect of Cytokines and bFGF on the Osteoclast Differentiation Induced by $1\;{\alpha},25-(OH)_2D_3$ in Primary Murine Bone Marrow Cultures

  • Chae, Han-Jung;Kang, Jang-Sook;Bang, Byung-Gwan;Cho, Seoung-Bum;Han, Jo-Il;Choi, Joo-Young;Kim, Hyung-Min;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권6호
    • /
    • pp.539-546
    • /
    • 1999
  • Bone is a complex tissue in which resorption and formation continue throughout life. The bone tissue contains various types of cells, of which the bone forming osteoblasts and bone resorbing osteoclasts are mainly responsible for bone remodeling. Periodontal disease represents example of abnormal bone remodeling. Osteoclasts are multinucleated cells present only in bone. It is believed that osteoclast progenitors are hematopoietic origin, and they are recruited from hematopoietic tissues such as bone marrow and circulating blood to bone. Cells present in the osteoclast microenvironment include marrow stromal cells, osteoblasts, macrophages, T-lymphocytes, and marrow cells. These cells produce cytokines that can affect osteoclast formation. In vitro model systems using bone marrow cultures have demonstrated that $IL-l{\beta},\;IL-3,\;TNF-{\alpha},$ bFGF can stimulate the formation of osteoclasts. In contrast, IL-4 inhibits osteoclast formation. Knowledge of cytokines and bFGF that affect osteoclast formation and their capacity to modulate the bone-resorbing process should provide critical insights into normal calcium homeostasis and disorders of bone turnover such as periodontal disease, osteoporosis and Paget's disease.

  • PDF

골쇄보가 RANKL에 의해 유도되는 파골세포의 분화에 미치는 영향 (Effect of Drynariae Rhizoma in RANKL-induced Osteoclast Differentiation)

  • 곽성철;문서영;곽한복;전병훈;오재민;최민규;김정중;장성조
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.506-510
    • /
    • 2012
  • Bone homeostasis is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoporosis, rheumatoid arthritis and periodontal disease are related with up-regulated osteoclast formation and its activity. Gol-Swae-Bo(Drynariae Rhizoma) is widely used on skeletal disease. In this study, we sought to examine the effect of Drynariae Rhizoma in RANKL-induced osteoclast differentiation. The extract of Drynariae Rhizoma inhibited RANKL-induced osteoclast differentiation in a dose dependent manner without cytotoxicity. receptor activator of nuclear factor-${\kappa}B$ ligand(RANKL) mediated $I{\kappa}B$ degradation in bone marrow macrophages(BMMs). However, the extract of Drynariae Rhizoma inhibited RANKL induced $I{\kappa}B$ degradation in BMMs. And mRNA expression of OSCAR, TRAP, c-Fos and NFATc1 was suppressed by the extract of Drynariae Rhizoma. Moreover, the extract of Drynariae Rhizoma inhibited the protein expression of NFATc1 and c-Fos induced by RANKL. After all the analysis, these results suggest that Drynariae Rhizoma may be good candidate of medicine in the treatment of bone-related disease.

Mechanisms underlying diabetes-induced bone loss

  • Ju Han Song;Xianyu Piao;Jeong-Tae Koh
    • International Journal of Oral Biology
    • /
    • 제49권2호
    • /
    • pp.27-33
    • /
    • 2024
  • Diabetes, a chronic hyperglycemic condition, is caused by insufficient insulin secretion or functional impairment. Long-term inadequate regulation of blood glucose levels or hyperglycemia can lead to various complications, such as retinopathy, nephropathy, and cardiovascular disease. Recent studies have explored the molecular mechanisms linking diabetes to bone loss and an increased susceptibility to fractures. This study reviews the characteristics and molecular mechanisms of diabetes-induced bone disease. Depending on the type of diabetes, changes in bone tissue vary. The molecular mechanisms responsible for bone loss in diabetes include the accumulation of advanced glycation end products (AGEs), upregulation of inflammatory cytokines, induction of oxidative stress, and deficiencies in insulin/IGF-1. In diabetes, alveolar bone loss results from complex interactions involving oral bacterial infections, host responses, and hyperglycemic stress in periodontal tissues. Therapeutic strategies for diabetes-induced bone loss may include blocking the AGEs signaling pathway, decreasing inflammatory cytokine activity, inhibiting reactive oxygen species generation and activity, and controlling glucose levels; however, further research is warranted.

A Pilot Study on Hip Bone Mineral Densities Estimation from Forearm CBCT images

  • Ko, Hoon;Lee, Chang-Hoon;Jeong, Kwanmoon;Lee, Myeung Su;Nam, Yunyoung;Yoon, Kwon-Ha;Lee, Jinseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.6054-6068
    • /
    • 2017
  • In this paper, we defined the relative cross-sectional area of forearm cortical bone and investigated its correlation with hip bone mineral density values of total femur, femoral neck, femoral trochanter, femoral inter-trochanter and femoral ward's triangle, respectively. Based on the correlations, we established a linear transformation between the relative cross-sectional area of forearm cortical bone and each hip bone BMD. We obtained forearm images using CBCT and hip bone BMDs using dual-energy X-ray absorptiometry (DXA) for 28 subjects. We also investigated the optimal forearm region to provide the strongest correlation coefficient. We used the optimized forearm region to establish each linear transformation to estimate BMD values for total femur, femoral neck, femoral trochanter, femoral inter-trochanter and femoral ward's triangle from the relative cross-sectional area of forearm cortical bone, respectively. We observed the strong correlations with total femur (r=0.889), femoral neck (r=0.924), femoral trochanter (r=0.821), femoral inter-trochanter (r=0.867) and femoral ward's triangle (r=0.895), respectively. The strongest correlation was observed in the forearm mid-shaft regions. Our results suggest that the hip bone BMD values can be simply estimated from forearm CBCT images in a convenient sitting position without X-ray exposure on a hip including genital organs, and may be useful for screening osteoporosis.

Closed extensor tendon rupture caused by Kienbock disease: a case report

  • Choi, Jong Yun;Cha, Won Jin;Jung, Ee Room;Seo, Bommie F.;Jung, Sung-No
    • Archives of Plastic Surgery
    • /
    • 제49권1호
    • /
    • pp.76-79
    • /
    • 2022
  • Kienböck disease, a rare disease that can cause chronic pain and motor dysfunction, occurs due to avascular necrosis of the lunate bone, which leads to dislocation of the carpal bone. Among various other etiologies, Kienböck disease can cause closed tendon rupture of the finger. In this report, we introduce a case of total rupture of the second extensor digitorum communis and the extensor indicis proprius tendons caused by undiagnosed Kienböck disease in an elderly female patient.

ORTHOPANTOMOGRAPH에 의한 치주병환자의 치조골흡수에 관한 연구 (ORTHOPANTOMOGRAPH STUDY OF THE ALVEOLAR BONE LEVEL ON PERIODONTAL DISEASE.)

  • 이기식
    • 치과방사선
    • /
    • 제2권1호
    • /
    • pp.41-46
    • /
    • 1972
  • The author had measured the alveolar bone level of periodontal disease on 50 cases of orthopantomogram to detect the degree of alveolar bone resorption of both sexes of Korean. The results were obtained as follows; 1. Alveolar bone resorption of mesial and distal portion was similiar in same patient. 2. The order of alveolar bone resorption was mandibular anterior region, posterior region, canine and premolar region of both jaws. 3. The degree of alveolar bone destruction was severe in shorter root length than longer. 4. The degree of alveolar bone resorption was severe in forth decades.

  • PDF

Metabolic Bone Diseases and New Drug Developments

  • Natesan, Vijayakumar;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • 제30권4호
    • /
    • pp.309-319
    • /
    • 2022
  • Metabolic bone diseases are serious health issues worldwide, since several million individuals over the age of 50 are at risk of bone damage and should be worried about their bone health. One in every two women and one in every four men will break a bone during their lifetime due to a metabolic bone disease. Early detection, raising bone health awareness, and maintaining a balanced healthy diet may reduce the risk of skeletal fractures caused by metabolic bone diseases. This review compiles information on the most common metabolic bone diseases (osteoporosis, primary hyperparathyroidism, osteomalacia, and fluorosis disease) seen in the global population, including their symptoms, mechanisms, and causes, as well as discussing their prevention and the development of new drugs for treatment. A large amount of research literature suggests that balanced nutrition and balanced periodic supplementation of calcium, phosphate, and vitamin D can improve re-absorption and the regrowth of bones, and inhibit the formation of skeletal fractures, except in the case of hereditary bone diseases. Meanwhile, new and improved drug formulations, such as raloxifene, teriparatide, sclerostin, denosumab, and abaloparatide, have been successfully developed and administered as treatments for metabolic bone diseases, while others (romososumab and odanacatib) are in various stages of clinical trials.