• 제목/요약/키워드: bone calcium

검색결과 947건 처리시간 0.031초

고 칼슘 섭취가 철이 부족한 성장기 흰쥐의 철 이용성과 뼈 성장에 미치는 영향 (The Effect of Excess Calcium on the Iron Bioavailability and Bone Growth of Marginally Iron Deficient Rats)

  • 장순옥;김기대;이성현
    • Journal of Nutrition and Health
    • /
    • 제37권8호
    • /
    • pp.645-654
    • /
    • 2004
  • This study examined the effect of excess calcium (Ca) on the iron (Fe) bioavailability and bone growth of marginally Fe deficient animals. Two groups of weanling female SD rats were fed either normal Fe (35 ppm) or Fe deficient diet (8 ppm) for 3 weeks. Then each group of animals were assigned randomly to one of three groups and were fed one of six experimental diets additionally for 4 weeks, containing normal (35 ppm) or low (15 ppm) Fe and one of three levels of Ca as normal (0.5%), high (1.0%), or excess (1.5%). Feces and urine were collected during the last 3 days of treatment. After sacrifice blood, organs, and femur bone were collected for analysis. Final body weight and average food intake were not affected by either the levels of dietary Ca or Fe. Low Fe diet significantly reduced the level of serum ferritin, however, for Hb, Hct, and TIBC no difference was shown than those in the normal Fe group. TIBC increased slightly by high and excess Ca intake in low Fe groups. For both normal and low Fe groups, high and excess Ca intakes reduced the apparent absorption of Fe and Fe contents of liver significantly (p < 0.05). Calcium contents in kidney and Femur of rats that were fed high and excess levels of Ca were significantly greater than those of normal Ca groups. However, weight, length, and breaking force of the bone were not affected by increased Ca intakes. Both in control and low Fe groups, high and excess intakes of Ca decreased the apparent absorption of Ca. These results indicate that the excess intakes of calcium than the normal needs would be undesirable for Fe bioavailability and that the adverse effects be more serious in marginally iron deficient growing animals. In addition bone growth and strength would not be favorably affected by high Ca intakes, though, the long term effect of increased Ca contents in bone requires further examination.

Effects of Nanocalcium Supplemented Milk on Bone Calcium Metabolism in Ovariectomized Rats

  • Park, H.S.;Jeon, B.J.;Ahn, J.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권8호
    • /
    • pp.1266-1271
    • /
    • 2007
  • This study examined effects of calcium supplemented milk on bone loss in ovariectomized rats. Twenty four Sprague-Dawley female rats, 7 weeks-old, were divided into 4 groups, ovariectomized and fed diets containing: 1) control, no Ca supplemented milk, 2) ovx 1, Ca carbonate supplemented milk, 3) ovx 2, ionized Ca supplemented milk, and 4) ovx 3, nano Ca supplemented milk. All rats were fed 1 ml of milk containing 20 mg supplemented Ca. After 18 wk feeding, body weight gain and food efficiency ratio were significantly different between ovx 1 and ovx 3. Serum concentration of calcium and phosphorus were not different among groups. However, there was a significant difference in calcium content of dry femoral weight in ovx 3 compared with the control and ovx 2. In addition, femoral bone mineral density ($g/cm^2$) was significantly greater in ovx 3 than in other groups (p<0.05). The ovx 3 group showed the highest stiffness (N/mm), maximum energy (N) in femur and trabecular bone area (%). The present study indicated that nano Ca supplementation in milk may be an effective way to enhance bone calcium metabolism for ovariectomized rats.

성견의 1면 골내낭에 calcium sulfate 이식이 치주조직 치유에 미치는 영향 (The Effects of calcium sulfate on healing of 1-wall intrabony defects in dogs)

  • 서혜연;최성호;문익상;조규성;김종관;채중규
    • Journal of Periodontal and Implant Science
    • /
    • 제27권2호
    • /
    • pp.363-377
    • /
    • 1997
  • The main goal of periodontal therapy is the regeneration of periodontal tissue which has been lost due to destructive periodontal diseases. Although conventional forms of periodontal therapy show sound clinical results, the healing results in long junctional epithelium. There have been numerous materials and surgical techniques developed for new attachment and bone regeneration. Bone grafts can be catagorized into: autografts, allografts, xenografts and bone substitutes. Synthetic bone substitute materials include hydroxyapatite, tricalcium phosphate, calcium carbonate, and Plaster of Paris. Calcium sulfate has found its use in dental practice for the last 30 years. Recent animal studies suggest that periodontal regeneration in 3 wall intrabony defect may be enhanced by the presence of calcium sulfate. And it is well known that 2 wall & 1 wall defect have less osteogenic potential, So we need to study the effect of calcium sulfate in 1 wall intrabony defect in dogs. The present study evaluates the effects of calcium sulfate on the epithelial migration, alveolar bone regeneration and cementum formation in intrabony defects of dogs. Four millimeter-deep one-wall intrabony defects were surgically created in the mesial aspect of anterior teeth and mesial & distal aspects of premolars. The test group received calcium sulfate grafts with a flap procedure. The control underwent flap procedure only. Histologic analysis following 8 weeks of healing revealed the following results: 1. The lengths of junctional epithelium were: 2.52mm in the control, and 1.89mm in the test group. There was no statistical significance between the two groups. 2. Alveolar bone formation were: 0.61mm in the control, and 1.88mm in the test group. There was a statistically significant difference between the two groups (p<0.05). 3. Cementum formations were: l.lmm in the control, and 2.46mm in the test group. There was a statistically significant difference between the two groups (p<0.05). 4. The length of CT adhesion were: O.97mm in the control, and 0.17mm in the test group. There was no statistically significant differences between the two groups These results suggest that the use of calcium sulfate in intrabony defects has little effect on junctional epithelium migration, but has significant effects on new bone and new cementum formations.

  • PDF

Application of Impedance Spectroscopy to Cement-Based Materials: Hydration of Calcium Phosphate Bone Cements

  • Kim, Sung-Moon;Hwang, Jin-Ha
    • 한국세라믹학회지
    • /
    • 제43권3호
    • /
    • pp.156-161
    • /
    • 2006
  • Impedance spectroscopy was applied to the initial hydration of calcium phosphate bone cements in order to investigate the electrical/dielectric properties. Hydration or equivalently setting was monitored as a function of the amount of water and initial powder characteristics. Higher amounts of water produced more open microstructures, leading to higher conductivity and enhanced dielectric constant. The effects of the initial characteristics in the powder were investigated using bone cement powder prepared with and without granulation. Granulated powder exhibited a significant change in resistance and produced a higher dielectric constant than those of conventional powder. Through a simplified modeling, the effects of thickness in reaction products and pore sizes were estimated by the frequency-dependent impedance measurements. Furthermore, impedance spectroscopy was proven to be a highly reliable tool for evaluating the continuous change in pore structure occurring in calcium phosphate bone cements.

상기생이 ethanol을 장기 투여한 흰쥐의 골 대사에 미치는 영향 (Effects of Taxilli Ramulus Extract on Bone Metabolism of Ethanol Treated Rats)

  • 정주화;정지천
    • 대한한의학회지
    • /
    • 제22권4호
    • /
    • pp.1-9
    • /
    • 2001
  • Objectives : To investigate the effect of Taxilli Ramulus (TR) extract on bone metabolism of ethanol-treated animal model. Methods : The changes of serum calcium, calcitonin, estrogen level, a1ka1ine phosphatase activity, osteocalcin, parathyroid hormone content and urine calcium level were observed with ethanol treatment for 60 days. The results were compared with an ethanol- TR extract double treatment group. Results : We observed increment of serum osteocalcin, parathyroid hormone content, alkaline phosphatase activity and urine calcium level by chronic ethanol feed and they were recovered to near normal level with Taxilli Ramulus extract treatment. Weight gain, serum calcium level, calcitonin and estrogen content were remarkably reduced with ethanol treatment and their levels were normalized by Taxilli Ramulus extract. Conclusions : These results showed that Taxilli Ramulus extract have the ability to recover to normal in the body an abnormal calcium metabolism process due to external factors. These results suggested that Taxilli Ramulus extract have preventive effects on calcium concentration loss and osteoporosis.

  • PDF

Palm Vitamin E Prevents Osteoporosis in Orchidectomized Growing Male Rats

  • Ima-Nirwana, S.;Kiftiah, A.;Zainal, A.G.;Norazlina, M.;Gapor, M.T.;Khalid, B.A.K.
    • Natural Product Sciences
    • /
    • 제6권4호
    • /
    • pp.155-160
    • /
    • 2000
  • Testosterone deficiency increased bone resorption, giving rise to osteoporosis. Testosterone deficiency also increased lipid peroxidation and free radical formation. Free radicals have been shown to be toxic to osteoblasts as well as to activate osteoclasts. In this study, the effects of giving an antioxidant, i.e. vitamin E-rich extract from palm oil on bone mineral density and calcium content was studied. Palm vitamin E prevented the loss in bone mineral density due to orchidectomy, seen in the whole femur, proximal amd midshaft regions, as well as L4 vertebra. Similar observations were seen in bone calcium content of the L5 vertebra. Giving palm olein also prevented the loss in bone mineral density in the femoral midshaft and L4 vertebra; and bone calcium content in the L5 vertebra. In conclusion, vitamin E-rich extract from palm oil was effective in preventing the loss in bone mineral density and calcium content of orchidectomized male rats. This action is probably due to its role as an antioxidant.

  • PDF

High concentration of calcium represses osteoblast differentiation in C2C12 cells

  • Lee, Ye Jin;Han, Younho
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.162-168
    • /
    • 2020
  • Calcium is the most abundant stored mineral in the human body and is especially vital for bone health; thus, calcium deficiency can cause bone-related diseases, such as osteopenia and osteoporosis. However, a high concentration of serum calcium, which is commonly known as hypercalcemia, can also lead to weakened bones and, in severe cases, osteosarcoma. Therefore, it is necessary to maintain the concentration of calcium that is appropriate for bone biology. In the present study, we aimed to elucidate the effects of high concentration of calcium, approximately 2 folds the normal calcium level, on osteoblast differentiation. The CaCl2 treatment showed dose-dependent suppression of the alkaline phosphatase activity and mineralized nodule formation. Calcium showed cytotoxicity at an extremely high concentration, but a moderately high concentration of calcium that results in inhibitory effects to osteoblast differentiation showed no signs of cytotoxicity. We also confirmed that the CaCl2 treatment repressed the mRNA expression and protein abundance of various osteogenic genes and transcriptional factors. Considered together, these results indicate that a high concentration of calcium negatively regulates the osteoblast differentiation of C2C12 cells.

골다공증 실혐모델 흰쥐의 칼슘대사에 대한 소뼈회분과 인산칼슘의 섭취 효과 (Effects of Bovine Ash and Calcium Phosphate on Calcium Metabolism in Postmenopausal Osteoporosis Model Rats)

  • 이연숙
    • Journal of Nutrition and Health
    • /
    • 제28권5호
    • /
    • pp.434-441
    • /
    • 1995
  • The model rats with postmenopausal osteoporosis were comparatively observed with regard to the effects of bovine ash and calcium phosphate on calcium metabolism. The modelling design involved the five week-old week-old female SD-strain rats ovariectomized and fed a low-Ca diet(20% casein, 0.06% Ca and 0.38% P) for three weeks. The rats were divided into five groups, one of which was fed the low-Ca diet(basal), and the rest of which were divided into five groups, one of which was fed the low-Ca diet(basal), and the rest of which were fed four kinds of Ca-supplemental diets(20% protein, 1.06% Ca and 0.8% P) for three weeks. The Ca-suplements diets contained two kinds of Ca sources, bovine bone ash(BBA) or calcium phosphate, tribasic [Ca3(PO4)2] and two kinds of protein sources, casein or isolated soy protein(ISP). The model rats of postmenopausal osteoporosis fed basal diet showed a significant decrease in Ca utilization in reference to serum Ca concentration, breaking force of bone, Ca and P contents of bone, and Ca absorption and retention. However, the supply of Ca for three weeks demonstrated the improved utilization of Ca. One step further, BBA was more effective than calcium phosphate in improving Ca utilization in ISP-fed groups. On the other hand, no significant difference was seen in casein-fed groups. It is to conclude that BBA could be more effective in accelerating Ca utilization under vulnerable dietary or physiological conditions such as vegetable protein intake and osteoprosis.

  • PDF

Effects of Calcium and Vitamin D Supplementation on Bone Mineral Density and Biochemical Markers in Osteoporotic Postmenopausal Women

  • Kim, Jeong, Seon;Kim, Joo-Hak
    • Nutritional Sciences
    • /
    • 제9권1호
    • /
    • pp.42-47
    • /
    • 2006
  • It has been reported that taking a proper amount of calcium and vitamin D helps to increase bone mineral density (BMD) and is effective in decreasing the risk of osteoporosis. This study investigated the supplementary effects of calcium and vitamin D on postmenopausal women who had osteoporosis and used calcium and vitamin D supplements. The study subjects consisted of osteoporotic postmenopausal women who were recruited from the Department of Orthopedics in a university-affiliated hospital. Sixty-seven study subjects were orally administrated 1,000 mg of calcium (calcium carbonate) and 2.5 mg of active vitamin D (1-$\alpha$ hydroxyvitamin D) (cholecalciferol 250 IU) twice a day for a year and a half. BMD and biochemical markers were evaluated and repeated every six months. One year after the intervention test, the bone mineral density of the lumbar spine was significantly increased as compared to the baseline. Six months after supplement administration, the level of serum alkaline phosphatase began to decrease, and afterwards a significant difference was maintained Concentration of 1, 25-dihydroxy-vitamin D at 1.5 years was higher than that of the baseline. In comparison with that of the baseline, the level of urinary hydroxyproline in the study subjects over six months was significantly decreased This study continued that effects such as BMD improvement and changes in biochemical markers appeared at least one year after administration of supplements.