• Title/Summary/Keyword: bonding design

Search Result 596, Processing Time 0.027 seconds

Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally-printed and milled materials after surface treatment and artificial aging

  • Ameer Biadsee;Ofir Rosner;Carol Khalil;Vanina Atanasova;Joel Blushtein;Shifra Levartovsky
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.45-53
    • /
    • 2023
  • Objective: This study aimed to evaluate the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensionally (3D)-printed materials after various surface treatments and artificial aging compared with that bonded to computer-aided design/computer-aided manufacturing (CAD-CAM) polymethyl methacrylate (PMMA)-milled materials. Methods: Eighty cylindrical specimens were 3D printed and divided into the following four subgroups (n = 20 each) according to the surface treatment and artificial aging procedure. Group A, sandblasted with 50 ㎛ aluminum oxide particles (SA) and aging; group B, sandblasted with 30 ㎛ silica-coated alumina particles (CO) and aging; group C, SA without aging; and group D, CO without aging. For the control group, 20 CAD-CAM PMMA-milled cylindrical specimens were sandblasted with SA and aged. The SBS was measured using a universal testing machine (0.25 mm/min), examined at ×2.5 magnification for failure mode classification, and statistically analyzed (p = 0.05). Results: The retention obtained with the 3D-printed materials (groups A-D) was higher than that obtained with the PMMA-milled materials (control group). However, no significant difference was found between the study and control groups, except for group C (SA without aging), which showed significantly higher retention than the control group (PMMA-SA and thermocycling) (p = 0.037). Study groups A-D predominantly exhibited a cohesive specimen mode, indicating specimen fracture. Conclusions: Orthodontic brackets bonded to 3D-printed materials exhibit acceptable bonding strengths. However, 3D-printed materials are prone to cohesive failure, which may result in crown fractures.

Transformation of digital dentistry and the need of introducing education in dental hygiene (디지털 덴티스트리의 전환과 치위생교육 도입의 필요성)

  • Hye-Bin Go;Young-Joo Seo;Bok-Yeon Won;Sang-Hwan Oh
    • Journal of Korean society of Dental Hygiene
    • /
    • v.22 no.6
    • /
    • pp.467-475
    • /
    • 2022
  • Objectives: This study aimed to understand the definitions, types, and principles of computer-aided design/computer-aided manufacturing (CAD/CAM) and scanners due to the introduction of digital workflows. Methods: This study was based on information from the government's law and articles published in academic journals. Results: CAD/CAM is a technology that measures the shape three-dimensionally, saves it as data, designs it into the desired shape, and processes the product. Scanners, which are classified as intraoral and extraoral scanners, measure teeth and the intraoral environment three-dimensionally and convert them into three-dimensional (3D). A 3D printer is a machine that creates a 3D object by layering materials based on a 3D drawing. It can be classified into four types according to the method: extrusion, powder bonding, lamination, and photopolymerization methods. The most used 3D printer methods in dentistry are stereolithograhpy and digital light processing, and they are widely used in prosthetic, surgical, and orthodontic fields. Conclusions: As the dental system is digitized, it is expected that the government will classify the dental hygienist scope of work and the universities will reflect the curriculum; it is necessary to develop excellent dental hygienists, diversify the educational pathways, and establish policies to meet the needs of the increasing number of patients.

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber-Epoxy Composite Board

  • SETYAYUNITA, Tamaryska;WIDYORINI, Ragil;MARSOEM, Sri Nugroho;IRAWATI, Denny
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.93-103
    • /
    • 2022
  • Currently, biofibers are used as a reinforcement in polymer composites for structural elements and construction materials instead of the synthetic fibers which cause environmental problems and are expensive. One of the chemicals with a pH close to neutral that can be potentially used as a modified fiber material is sodium chloride (NaCl). Therefore, this study aims to investigate the characteristics of a composite board made from NaCl-treated kenaf fiber. A completely randomized design method was used with consideration of two factors: the content of NaCl in the treatment solution (1 wt%, 3 wt%, and 5 wt%) and the duration of immersion of fibers in the solution (1 h, 2 h, and 3 h). The NaCl treatment was conducted by soaking the fibers in the solution for different durations. The fibers were then rinsed with water until the pH of the water reached 7 and subsequently dried inside an oven at 80℃ for 6 h. Kenaf fiber and epoxy were mixed manually with the total loading of 20 wt% based on the dry weight of the fiber. Physical and mechanical properties of the fibers were then evaluated based on JIS A 5908 particleboard standards. The results showed that increasing NaCl content in the fiber treatment solution can increase the physical and mechanical properties of the composite board. The properties of fibers treated with 5 wt% NaCl for 3 h were superior with a modulus of elasticity of 2.085 GPa, modulus of rupture of 19.77 MPa, internal bonding of 1.8 MPa, thickness swelling of 3%, and water absorption of 10.9%. The contact angle of untreated kenaf fibers was 104°, which increased to 80° and 73° on treatment with 1 wt% and 5 wt% NaCl for 3 h, respectively.

Study on the performance indices of low-strength brick walls reinforced with cement mortar layer and steel-meshed cement mortar layer

  • Lele Wu;Caoming Tang;Rui Luo;Shimin Huang;Shaoge Cheng;Tao Yang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.439-453
    • /
    • 2023
  • Older brick masonry structures generally suffer from low strength defects. Using a cement mortar layer (CML) or steel-meshed cement mortar layer (S-CML) to reinforce existing low-strength brick masonry structures (LBMs) is still an effective means of increasing seismic performance. However, performance indices such as lateral displacement ratios and skeleton curves for LBMs reinforced with CML or S-CML need to be clarified in performance-based seismic design and evaluation. Therefore, research into the failure mechanisms and seismic performance of LBMs reinforced with CML or S-CML is imperative. In this study, thirty low-strength brick walls (LBWs) with different cross-sectional areas, bonding mortar types, vertical loads, and CML/S-CML thicknesses were constructed. The failure modes, load-carrying capacities, energy dissipation capacity and lateral drift ratio limits in different limits states were acquired via quasi-static tests. The results show that 1) the primary failure modes of UBWs and RBWs are "diagonal shear failure" and "sliding failure through joints." 2) The acceptable drift ratios of Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) for UBWs can be 0.04%, 0.08%, and 0.3%, respectively. For 20-RBWs, the acceptable drift ratios of IO, LS, and CP for 20-RBWs can be 0.037%, 0.09%, and 0.41%, respectively. Moreover, the acceptable drift ratios of IO, LS, and CP for 40-RBWs can be 0.048%, 0.09%, and 0.53%, respectively. 3) Reinforcing low-strength brick walls with CML/S-CML can improve brick walls' bearing capacity, deformation, and energy dissipation capacity. Using CML/S-CML reinforcement to improve the seismic performance of old masonry houses is a feasible and practical choice.

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

Control of Position of Neutral Line in Flexible Microelectronic System Under Bending Stress (굽힘응력을 받는 유연전자소자에서 중립축 위치의 제어)

  • Seo, Seung-Ho;Lee, Jae-Hak;Song, Jun-Yeob;Lee, Won-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • A flexible electronic device deformed by external force causes the failure of a semiconductor die. Even without failure, the repeated elastic deformation changes carrier mobility in the channel and increases resistivity in the interconnection, which causes malfunction of the integrated circuits. Therefore it is desirable that a semiconductor die be placed on a neutral line where the mechanical stress is zero. In the present study, we investigated the effects of design factors on the position of neutral line by finite element analysis (FEA), and expected the possible failure behavior in a flexible face-down packaging system assuming flip-chip bonding of a silicon die. The thickness and material of the flexible substrate and the thickness of a silicon die were considered as design factors. The thickness of a flexible substrate was the most important factor for controlling the position of the neutral line. A three-dimensional FEA result showed that the von Mises stress higher than yield stress would be applied to copper bumps between a silicon die and a flexible substrate. Finally, we suggested a designing strategy for reducing the stress of a silicon die and copper bumps of a flexible face-down packaging system.

Channel Structure and Header Design of Printed Circuit Heat Exchanger by Applying Internal Fluid Pressure (유체 내압을 고려한 인쇄기판형 열교환기의 채널구조 및 헤더 설계)

  • Kim, Jungchul;Shin, Jeong Heon;Kim, Dong Ho;Choi, Jun Seok;Yoon, Seok Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.767-773
    • /
    • 2017
  • Printed Circuit Heat Exchanger (PCHE) has an advantage for exchanging thermal energy between high-pressure and high-temperature fluids because its core is made by diffusion bonding method of accumulated metal thin-plates which are engraved of flow channel. Moreover, because it is possible that the flow channel can be micro-size hydraulic diameter, the heat transfer area per unit volume can be made larger than traditional heat exchanger. Therefore, PCHE can have higher efficiency of heat transfer. The smaller channel size can make the larger heat transfer area per unit volume. But if high pressure fluid flows inside the channel, the channel wall can be deformed, the structure and shape of flow channel and header have to be designed appropriately. In this study, the design methodology of PCHE channel in high pressure environment based on pressure vessel codes was investigated. And this methodology was validated by computational analysis.

Study of the Behavior of Concrete Slab Track on Earthwork According to the Variation of Train Axle Load and Speed (열차하중, 속도변화에 따른 토공상 콘크리트 슬래브궤도의 거동특성연구)

  • Chun, Hee-Kwang;Kang, Yun-Suk;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6788-6798
    • /
    • 2015
  • In recent high speed rail way, the operating speed of train is enhanced and the introduction of EMU train vehicles is increased. In addition, as expected the demand of the concrete slab track and the trend of design cross-section reduction, the clear behavior of evaluation of internal slab layer is demanded about the variation of design load and speed. The purpose of this study is to evaluate and identify the mechanical behavior pattern of concrete slab track and track-road bed with the variation of axle load and train speed. To this end, the behavior of TCL and HSB was evaluated in according to the variation of axle load and speed. And the analysis results and the data measured TCL strain sensor, which was embedded in TCL slab under installation on Honam high speed railway, was analyzed. The analysis result shows that the strain are increasing in according to the speed-up of train, and line regression was obtained from measured data. Analysis data of the state of bonding condition of slab layer and measured data was analyzed. It is conducted that the TCL layer stress of HEMU 430X, which of axle load, is lighter was similar to the stress of KTX-Honam, the standard deviation of measured stress is dramatically increased.

Behavior Characteristics of Cement Bentonite Impervious Walls Related to Mixing Methods and Curing Time (강화벤토나이트 차수벽체의 배합방법 및 양생일에 따른 거동 특성)

  • Hwang, Jungsoon;Kim, Seungwook;Jung, Jungi;Lee, Seungjoo;Oh, Byeungsam;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.45-54
    • /
    • 2016
  • In this study, the construction method of new underground continuos impervious wall that the bentonite slurry keeps the stability of excavated trench and the mixture of cement and bentonite plays a role as a constituent of impervious wall in the trench. The merit of homogeneity of the method so called as a cement-bentonite slurry wall enables to accurately make an estimation of hydraulic conductivity of the walls compared with that by other general grouting methods and to verify their waterproof efficiency without difficulty at the design stage. The use of cement-bentonite slurry walls for the containment of groundwater flow has also proven a cost-effective impervious wall technology by employing the simple combination of construction equipments and easy and fast construction procedures. The engineering characteristics of cement-bentonite impervious wall obtained by carrying out the laboratory experiments under various conditions. This study reveals the effect of variation of constituent materials and their mixing methods (Water-Cement-Bentonite) on the engineering characteristics of a composition. Also, this study makes some recommendations on the optimum mixing ratio and mixing sequence for the best quality at the site. That is the most important factors to estimate the construction cost and design of the technique. The comparison is lastly made to evaluate the effect of ordinary Portland and blast furnace slag cement as a bonding material on the behavior of impervious walls.