• Title/Summary/Keyword: bonding degradation

Search Result 127, Processing Time 0.033 seconds

Effect of Low-temperature Thermal Treatment on Degree of Crystallinity of a Low Density Polyethylene: $^{1}H$ Nuclear Magnetic Resonance Study (저밀도 폴리에틸렌의 결정화도에 대한 저온 열처리 효과: 수소 핵자기공명 연구)

  • Lee, Chang-Hoon;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.259-263
    • /
    • 2008
  • An effect of low-temperature long-term thermal degradation on a degree of crystallinity of a low density polyethylene (LDPE) was investigated by using $^1H$ solid state nuclear magnetic resonance (SSNMR). Firstly, the long-term thermal treatment makes a color of LDPE from white to pale yellow which is indicative of thermal oxidation. Secondly, it makes the $^{1}H$ NMR spin-spin and spin-lattice relaxation times ($T_1$) to be long. Lastly, the degree of crystallinity of the semicrystalline aged-LDPE also decreases with thermal treatment. Above all, the $T_1$ increase is envisaged to be due to either a decrease of the amorphous regions governing overall spin-lattice relaxation mechanism in LDPEs or a dynamically restricted motion of specific molecular motions by intermolecular hydrogen bonding or crosslinking. However, since the decrease of crystallinity implies an increase of amorphous regions by the thermal treatment, the former case is contrast to our results. Accordingly, we concluded that the latter effect is responsible for the $T_1$ increase.

Implementation of High-Power PM Diode Switch Modules and High-Speed Switch Driver Circuits for Wibro Base Stations (와이브로 기지국 시스템을 위한 고전력 PIN 다이오드 스위치 모듈과 고속 스위치 구동회로의 구현)

  • Kim, Dong-Wook;Kim, Kyeong-Hak;Kim, Bo-Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.364-371
    • /
    • 2007
  • In this paper, the design and implementation of high-power PIN diode switch modules and high-speed switch driver circuits are presented for Wibro base stations. To prevent isolation degradation due to parasitic inductances of conventional packaged PIN diodes and to improve power handling capabilities of the switch modules, bare diode chips are used and carefully placed in a PCB layout, which makes bonding wire inductances to be absorbed in the impedance of a transmission line. The switch module is designed and implemented to have a maximum performance while using a minimum number of the diodes. It shows an insertion loss of ${\sim}0.84\;dB$ and isolation of 80 dB or more at 2.35 GHz. The switch driver circuit is also fabricated and measured to have a switching speed of ${\sim}200\;nsec$. The power handling capability test demonstrates that the module operates normally even under a digitally modulated 70 W RF signal stress.

A Low Insertion Loss CBFGCPW-Microstrip Transition and Its Application to MIC Module Integration (저 손실을 갖는 CBFGCPW-Microstrip 천이 구조의 해석 및 MIC 모듈 집적화에 응용)

  • Lim, Ju-Hyun;Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.809-818
    • /
    • 2007
  • Generally, carriers on which microwave circuits are mounted are used as building blocks of MIC module for the convenience of MIC assembly and the unit module characterization. However the interconnection of the microstrip-based carriers by wire bonding causes the serious problem of mismatch and results in the higher insertion loss as frequency becomes higher. The gap and the depth between carriers are considered as the main reason of the degradation. The CPW can be the solution to cope with such problem considering its field are dominantly concentrated on the top plane. In this paper, we propose and demonstrate the CBFGCPW to microstrip transition with the low insertion loss that can be applied without causing the MIC carrier interconnection problem.

다채널 표면 플라즈몬 공명 영상장치를 이용한 자기조립 단분자막의 표면 분석

  • Pyo, Hyeon-Bong;Sin, Yong-Beom;Yun, Hyeon-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.74-78
    • /
    • 2003
  • Multi-channel images of 11-MUA and 11-MUOH self-assembled monolayers were obtained by using two-dimensional surface plasmon resonance (SPR) absorption. Patterning process was simplified by exploiting direct photo-oxidation of thiol bonding (photolysis) instead of conventional photolithography. Sharper images were resolved by using a white light source in combination with a narrow bandpass filter in the visible region, minimizing the diffraction patterns on the images. The line profile calibration of the image contrast caused by different resonance conditions at each points on the sensor surface (at a fixed incident angle) enables us to discriminate the monolayer thickness in sub-nanometer scale. Furthermore, there is no signal degradation such as photo bleaching or quenching which are common in the detection methods based on the fluorescence.

  • PDF

Enhanced solid element for modelling of reinforced concrete structures with bond-slip

  • Dominguez, Norberto;Fernandez, Marco Aurelio;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.347-364
    • /
    • 2010
  • Since its invention in the $19^{th}$ century, Reinforced Concrete (RC) has been widely used in the construction of a lot of different structures, as buildings, bridges, nuclear central plants, or even ships. The details of the mechanical response for this kind of structures depends directly upon the material behavior of each component: concrete and steel, as well as their interaction through the bond-slip, which makes a rigorous engineering analysis of RC structures quite complicated. Consequently, the practical calculation of RC structures is done by adopting a lot of simplifications and hypotheses validated in the elastic range. Nevertheless, as soon as any RC structural element is working in the inelastic range, it is possible to obtain the numerical prediction of its realistic behavior only through the use of non linear analysis. The aim of this work is to develop a new kind of Finite Element: the "Enhanced Solid Element (ESE)" which takes into account the complex composition of reinforced concrete, being able to handle each dissipative material behavior and their different deformations, and on the other hand, conserving a simplified shape for engineering applications. Based on the recent XFEM developments, we introduce the concept of nodal enrichment to represent kinematics of steel rebars as well as bonding. This enrichment allows to reproduce the strain incompatibility between concrete and steel that occurs because of the bond degradation and slip. This formulation was tested with a couple of simple examples and compared to the results obtained from other standard formulations.

An Experimental Study on the Heat Transfer Characteristics of the Conversion Efficiency in the Concentrated Photovoltaic Cells (방열 특성에 따른 집광형 태양전지의 광전변환효율 변화에 관한 실험적 연구)

  • Kim, Kangho;Jung, Sang Hyun;Kim, Youngjo;Kim, Chang Zoo;Jun, Dong Hwan;Shin, Hyun-Beom;Lee, Jaejin;Kang, Ho Kwan
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.168-172
    • /
    • 2014
  • Under concentrated illuminations, the solar cells show higher efficiencies mainly due to an increase of the open circuit voltage. In this study, InGaP/InGaAs/Ge triple-junction solar cells have been grown by a low pressure metalorganic chemical vapor deposition. Photovoltaic characteristics of the fabricated solar cells are investigated with a class A solar simulator under concentrated illuminations from 1 to 100 suns. Ideally, the open circuit voltage should increase with the current level when maintained at the same temperature. However, the fabricated solar cells show degraded open circuit voltages under high concentrations around 100 suns. This means that the heat sink design is not optimized to keep the cell temperature at $25^{\circ}C$. To demonstrate the thermal degradation, changes of the device performance are investigated with different bonding conditions and heat sink materials.

Effects of Cr Addition on the Magnetic Properties and Corrosion Resistance of Nanocrystalline FeZrN Thin Films (미결정 FeZrN 박막의 자기특성 및 내식성에 미치는 Cr 첨가 효과)

  • 김태영;강남석;송기창;조삼제;안동훈
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.135-141
    • /
    • 1994
  • With the variation of Cr content and $N_2$ flow ratio, the soft magnetic properties, corrosion resistance and reactivity of the sputtered nanocrystalline FeZrCrN thin flims were investigated. In case of FeZrCrN thin films, a saturation magnetization was decreased with increasing $N_2$ flow ratio. In addition, good soft magnetic properties were obtained at the flow ratio of 3% $N_2$. The $Fe_{64.9}Zr_{8.8}Cr_{5.8}N_{20.5}$ nanocrystalline thin film after annealing at $550^{\circ}C$ exhibited the saturation magnetization of 12.5kG, low coercivity of 0.4 Oe and high permeability of 2600 at 5 MHz. Films containing up to 7.5% Cr showed an enhanced corrosion resistance and reduced reactivity with the bonding glass without degradation of soft magnetic properties, although the saturation magnetization was decreased slightly with the Cr addtion.

  • PDF

Synthesis of p-Phenylenediamine (PPD) using Supercritical Ammonia (초임계 암모니아를 이용한 p-Phenylenediamine(PPD) 합성 및 특성연구)

  • Cho, Hang-Kyu;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.53-56
    • /
    • 2015
  • In this study, investigated the synthesis method of p-Phenylenediamine (PPD) by amination of p-Diiodobenzene (PDIB) under supercritical ammonia and CuI catalyst conditions. We examined the effects of various process variables (e.g., reaction temperature, pressure, amount of ammonia inserted, amount of catalyst inserted, and reaction time) on the production yield of PPD by analyzing the Gas Chromatography (GC). The experimental results demonstrated that PPD was not produced under non-catalyst conditions, and PPD production yield increased with increasing temperature, pressure, amount of catalyst inserted, and reaction time. However, for the reaction temperature case, it was found that $200^{\circ}C$ was the optimal temperature, because thermal degradation of PPD occurred above $250^{\circ}C$. In addition, we confirmed the structure of PPD and the bonding characteristics of the amine group via FT-IR and H-NMR analysis.

A Research on the Static Discharger Installation Design and Test for Air Vehicle (항공기 외표면 정전기 방출기 장착설계 및 시험에 관한 연구)

  • Woo, Hee-Chae;Kim, Yong-Tae;Kim, Bong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.574-580
    • /
    • 2017
  • Static dischargers should be installed on air vehicle to emit a static electricity during flight. Especially, If static electricity is not removed by static discharger on the air vehicle, it makes ionization and corona effect on the edge of antenna and wing. Those phenomenon bring about performance degradation for radio communication and equipment operation. In this paper, the conditions such as climate, air vehicle's speed and frontal area were analyzed to design static dischargers. As a result, the static dischargers would be optimally designed for air vehicles and the performance of the static dischargers can verify according to the functional experiment. Therefore the result of this research will be used to make static discharger installation design for new air vehicle that have different size and mission.

Mechanical Behavior of Weldbond Joint of 1.2GPa Grade Ultra High Strength TRIP Steel for Car Body Applications (차체용 1.2GPa급 초고장력 TRIP강의 Weldbond 접합부의 기계적 거동)

  • Lee, Jong-Dae;Lee, So-Jeong;Bang, Jung-Hwan;Kim, Dong-Cheol;Kang, Mun-Jin;Kim, Mok-Soon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • The effect of weldbond hybrid joining process on the mechanical behavior of single lap and L-tensile joints was investigated for the newly developed 1.2GPa grade ultra high strength TRIP(transformation induced plasticity) steel. In the case of single lap shear behavior, the weldbond joint of 1.2GPa TRIP steel showed lower maximum tensile load and elongation than that of the adhesive bonding only. It was considered to be due to the reduction of real adhesion area, which was caused by the degradation of adhesive near the spot weld, and the brittle fracture behavior of the spot weld joint. In the case of L-tensile behavior, however, the maximum tensile load of the weldbond joint of 1.2GPa TRIP steel was dramatically increased and the fracture mode was change to the base metal fracture which is desirable for the spot weld joint. These synergic effect of the weldbond hybrid joining process in 1.2GPa TRIP steel was considered to be due to the stress dissipation around the spot weld joint by the presence of adhesive which resulted in the change of crack propagation path.