• Title/Summary/Keyword: bond strength calculation

Search Result 29, Processing Time 0.026 seconds

Interfacial bond properties and comparison of various interfacial bond stress calculation methods of steel and steel fiber reinforced concrete

  • Wu, Kai;Zheng, Huiming;Lin, Junfu;Li, Hui;Zhao, Jixiang
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.515-531
    • /
    • 2020
  • Due to the construction difficulties of steel reinforced concrete (SRC), a new composite structure of steel and steel fiber reinforced concrete (SSFRC) is proposed for solving construction problems of SRC. This paper aims to investigate the bond properties and composition of interfacial bond stress between steel and steel fiber reinforced concrete. Considering the design parameters of section type, steel fiber ratio, interface embedded length and concrete cover thickness, a total of 36 specimens were fabricated. The bond properties of specimens were studied, and three different methods of calculating interfacial bond stress were analyzed. The results show: relative slip first occurs at the free end; Bearing capacity of specimens increases with the increase of interface embedded length. While the larger interface embedded length is, the smaller the average bond strength is. The average bond strength increases with the increase of concrete cover thickness and steel fiber ratio. And calculation method 3 proposed in this paper can not only reasonably explain the hardening stage after the loading end curve yielding, but also can be applied to steel reinforced high-strength concrete (SRHC) and steel reinforced recycled coarse aggregate concrete (SRRAC).

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

Bond-slip behavior of reactive powder concrete-filled square steel tube

  • Qiuwei, Wang;Lu, Wang;Hang, Zhao
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.819-830
    • /
    • 2022
  • This paper presented an experimental study of the bond-slip behavior of reactive powder concrete (RPC)-filled square steel tube. A total of 18 short composite specimens were designed forstatic push-out test, and information on their failure patterns, load-slip behavior and bond strength was presented. The effects of width-to-thickness ratio, height-to-width ratio and the compressive strength of RPC on the bond behavior were discussed. The experimental results show that:(1) the push-out specimens remain intact and no visible local buckling appears on the steel tube, and the interfacial scratches are even more pronounced at the internal steel tube of loading end; (2) the bond load-slip curves with different width-to-thickness ratios can be divided into two types, and the main difference is whether the curves have a drop in load with increasing slip; (3) the bond strength decreases with the increase of the width-to-thickness ratio and height-width ratio, while the influence of RPC strength is not consistent; (4) the slippage has no definite correlation with bond strength and the influence of designed parameters on slippage is not evident. On the basis of the above analysis, the expressions of interface friction stress and mechanical interaction stress are determined by neglecting chemical adhesive force, and the calculation model of bond strength for RPC filled in square steel tube specimens is proposed. The theoretical results agree well with the experimental data.

Molecular Orbital Calculation on the Conflguration of Hydroxyl Group in Hexagonal Hydroxyapatite

  • Chang, Myung-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.304-307
    • /
    • 2005
  • The possible configurations of hydroxyl group in hexagonal hydroxyapatite were identified through molecular orbital calculation. The molecular orbital interaction between O and H in hydroxyl column was analyzed using charge variation and Bond Overlap Population (BOP). We supposed 5 kinds of O-H bond configurations as cluster types of I, II, III, IV, and V. Mulliken's population analysis was applied to evaluate ionic charges of O, H, P, and Ca ions, and BOPs (Bond Overlap Populations) in order to discuss the bond strength change by the atomic arrangement. The stability of each O-H bond configuration was analyzed using bond overlap and ionic charge.

Calculation of Crack Width and Crack Spacing of High-Strength Concrete Members (고강도콘크리트 부재의 균열폭 및 균열간격 계산에 관한 연구)

  • Jung, Gi-Oh;Lee, Gi-Yeol;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.227-232
    • /
    • 2002
  • This paper describes a calculation of an average crack spacing and the maximum crack width for the high-strength concrete tensile and flexural members. Based on the uniform bond stress distribution of the average steel and concrete strains over the transfer length, the crack spacing and the crack width are proposed to utilize influence of the concrete strength and the cover thickness. This analytical results presented in this paper indicate that the proposed equations can be more effectively estimated the maximum crack width and the average crack spacing of the reinforced concrete flexural and tensile members.

  • PDF

Proposed Design Provisions for Development Length Considering Effects of Confinement

  • Choi, Oan-Chul;Kim, Byoung-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.49-54
    • /
    • 2006
  • Confinement is major contribution to bond strength between reinforcement steel bars and concrete. Cover thickness, bar spacing and transverse reinforcement are the key confinement factors of current provisions for the development and splices of reinforcement. However, current provisions are still too complicated to determine the values of the confinement, which need to be well delineated in the process of design. In this study, an experimental work using beam-end and splice specimens was performed to examine the effect of concrete cover on bond strength. The results of this experiment and previously available data are analyzed to identify the effects of confinement on bond strength. From this reevaluation, new provisions for the development and splices of reinforcement are proposed. The provisions suggest some limitations in the confinement index. The new provisions will allow the engineers to use a simple and yet satisfactory and appropriate method or a precise approach for design to determine the values of confinement on the calculation of development and splice lengths.

A Simple Approach to the Ionic-Covalent Bond Based on the Electronegativity and Acid Strength of Cations. Part One:Calculation of the Electronegativity and Acid Strength

  • Josik Portier;Guy Campet
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.427-436
    • /
    • 1997
  • A simple relation exists between electronegativities of cations and their oxidation states and ionic radii. An empirical law is proposed: X = 0.274 z-0.15 z r - 0.01 r+1+${\alpha}$, z being oxidation number, r ionic radius in $\AA$ and ${\alpha}$ a term related to the atomic number. this relation permits to calculate an electronegativity scale covering a large set of electronic and crystallographic situations. An application to the calculation of acid strengths of cations is presented.

  • PDF

Calculation of Required Bond Strength for Bridge Deck Overlay Using Finite Element Analysis (유한요소해석을 이용한 교면포장의 필요부착강도 산정)

  • Kwon, Hyuck;Jang, Heung-Gyun;Jung, Won-Kyong;Kim, Dong-Ho;Yung, Kyong-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.191-196
    • /
    • 2002
  • The bonding strength of the interface between the actual bridge concrete deck and overlay was primarily affected by the shear that depended on the flexural behavior than pure tensile, but the field bonding test measured bonding strength by the pure tensile due to simplicity and field applicability. Therefore, the purpose this study was to evaluate the required direct bond strength for bridge deck overlay using Finite element analysis with the many variavles such as bridge deck types, span length, material properties, lanes, and loading types. The commercial program LUSAS was used in analysis. The analysis results were compared to the value of specification currently used in highway construction site.

  • PDF

Splice Length of High Relative Rib Area Reinforcing Bars (높은 마디 고강도 철근의 이음성능)

  • Oh Ha Na;Hong Geon Ho;Song Ki Mo;Choi Dong Uk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.116-119
    • /
    • 2004
  • The use of higher strength materials frequently requires the change of design provisions. Following to the previous researches, high strength reinforcing bars have a weak point about the development and splice length. Based on the previous research about high relative rib area, bond strength between reinforcing bars and concrete can be improved by the control of rib height and spacing. But, the code provisions do not include these specific shape of reinforcing bars. So, the purpose of this paper is to determine the effect of relative rib area to the bond strength. This paper describes the experiment and analysis of 5 beam-spliced specimens containing D25 with relative rib areas ranging from 0.073 to 0.17. The test results are also analyzed to make a design formula about the calculation of splice length on the consideration of relative rib area.

  • PDF

Bond Performance Test for Optimum Mixing Ratio Calculation of the Floatig Floor Method on Roof-top (옥상 뜬바닥 구조공법의 접착제 최적 배합비 산정을 위한 부착성능 실험)

  • Seo, Yu-Hyun;Park, Jun-Mo;Kim, Ok-Kyue;Jung, Il-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.111-112
    • /
    • 2016
  • Waterproofing methods for applying to roof-top in the building are various, but it is not enough to development, which are simplified and low-cost method for old building. Especially, these buildings have not only a low insulation, but a disadvantage for energy. A floating floor method is necessary for this. This study performs an experimentt about bonding capacity of complex panel for waterproofing and heat insulation. The bond strength experiment is based on KS F 4716, and it is considered by bond mix proportion about panel and slab.

  • PDF