• Title/Summary/Keyword: bond material

Search Result 851, Processing Time 0.033 seconds

Shear Bond Strength of a 3-in-1 Flowable Composite Resin to Primary Teeth (유치에 대한 3-in-1 유동성 복합레진의 전단결합강도)

  • Lee, Hyeongjik;Shin, Jonghyun;Kim, Jiyeon;Jeong, Taesung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.4
    • /
    • pp.436-444
    • /
    • 2018
  • The purpose of this study was to compare the shear bond strengths of 3-in-1 flowable composite to the enamel and dentin of primary teeth to previous adhesive systems. 110 primary incisors were prepared and divided into two groups: Dentin group included 5 groups: 1) Scotch bond Multi-purpose plus(DSM), 2) Single-bond 2(DSB), 3) Clearfil SE bond(DSE), 4) All bond universal(DAB), 5) Constic(DC), and Enamel group included 6 groups: 1) Scotch bond Multi-purpose plus(ESM), 2) Single bond 2(ESB), 3) Clearfil SE bond(ESE), 4) All bond universal(EAB), 5) Constic(EC), 6) Constic with additional etching(ECE). A cylinder of composite was bonded to the prepared surface, and the shear bond strength was measured. In the dentin groups, group DC had significantly lower shear bond strength than group DSE. No significant difference was found between group DC, group DSM, group DSB and group DAB. In the enamel groups, there was no significant difference between group EC, group ESE, and group EAB. This material showed lowest shear bond strength among all tested materials in both enamel and dentin groups, showing insignificant difference with some adhesive systems. Therefore, 3-in-1 flowable composite can be used for primary teeth restoration but further studies are needed.

Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete (섬유보강 콘크리트에 묻힌 GFRP 보강근의 부착거동에 대한 섬유영향 평가)

  • Kang, Ji-Eun;Kim, Byoung-Ill;Park, Ji-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • Though steel reinforcing bars are the most widely used tensile reinforcement, corrosion problems are encountered due to the exposure to aggressive environments. As an alternative material to steel, the fiber reinforced polymers have been used as reinforcement in concrete structures. However, bond strength of FRP rebar is relatively low compared to steel rebar. It has been reported that fibers in matrix can resist crack growth, propagation and finally result in an increase of toughness. In this study, high-strength concrete reinforced with structural fibers was produced to enhance interfacial bond behavior between FRP rebar and concrete matrix. The interfacial bond-behaviors were investigated from a direct pullout test. The test variables were surface conditions of GFRP bars and fiber types. Total of 54 pullout specimens with three different types of bars were cast for bond strength tests. The bond strength-slip responses and resistance of the bond failure were evaluated. The test results showed that the bond strength and toughness increased according to the increased fiber volume.

A Study on the Bond-Behavior of Bonded Concrete Overlays (접착식 콘크리트 덧씌우기 포장의 부착거동 연구)

  • Kim, Young-Kyu;Lee, Seung-Woo;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.31-45
    • /
    • 2012
  • PURPOSES: In Korea, rapid maintenance of distressed concrete pavement is required to prevent traffic jam of the highway. Asphalt concrete overlay has been used as a general maintenance method of construction for aged concrete pavement. AC overlay on existing concrete pavements experience various early distresses such as reflection crack, pothole and rutting, due to different physical characteristics between asphalt overlay and existing concrete pavement. Bonded concrete overlay(BCO) is a good alternative since it has advantages that can reduce various distresses during the service life since overlay material has similar properties with existing concrete pavements. Recently, BCO which uses the ultra rapid harding cement has been applied for maintenance of highway. BCO has advantage of structural performance since it does monolithic behave with existing pavement. Therefore, it is important to have a suitable bond strength criteria for securing performance of BCO. Bond strength criteria should be larger than normal tensile stress and horizontal shear stress occurred by traffic and environmental loading at bond interface. Normal tensile stress and horizontal shear stress need to estimated for the establishment of practical bond strength criteria. METHODS: This study aimed to estimate the bond stresses at the interface of BCO using the three dimensional finite element analysis. RESULTS: As a result of this study, major failure mode and maximum bond stress are evaluated through the analysis of normal tensile stress and horizontal shear stress for various traffic and environmental load conditions. CONCLUSIONS: It was known that normal tensile stresses are dominated by environmental loading, and, horizontal shear stresses are dominated by traffic loading. In addition, bond failure occurred by both of normal tensile stresses and horizontal shear stresses; however, normal tensile stresses are predominated over horizontal shear stresses.

THE EFFECT OF SIZE AND SHAPE OF RETENTION ELEMENT ON COMPOSITE TO METAL BOND STRENGTH (유지요소의 크기와 형태가 간접복합레진과 금속간의 결합강도에 미치는 영향)

  • Lee, Yun-Jung;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.665-674
    • /
    • 2007
  • Purpose: The purpose of this study was to investigate the effect of sire and shape of retention element on the bond strength of indirect composite resin and metal. Material and method: The metal disk specimens, each 6mm in diameter, were cast from CrCo alloy. They were divided into 8 groups by applied retention element. retention bead group $B2\;({\phi}\;0.2mm),\;B4\;({\phi}\;0.4mm),\;B6\;({\phi}\;0.6mm),\;B8\;({\phi}\;0.8mm)$, retention crystal group C2 (0.2mm), C5 (0.5mm), C8 (0.8mm) and sandblasting group SB ($110{\mu}m\;Al_2O_3$ blasting) as control. Eighty-eight metal specimens were veneered with $TESCERA^{(R)}$ Indirect resin system. One specimen of each group was sectioned and the resin-metal bonding pattern at the interface was observed under measuring microscope. Other specimens were then tested for tensile bond strength on an Instron universal testing machine at a crosshead speed of 2mm/min. Results: 1. Compared to sandblasting, beads or crystals increased the resin-metal bond strength (P<.05). 2. 0.2mm retention crystals were most effective in improving the resin-metal bond strength (P>.05). 3. 0.2mm beads showed the highest bond strength among retention bead groups, but there was no statistically significant difference (P>.05). 4. Retention crystals tend to be higher in bond strength than retention beads due to wider surface area. 5. The larger retention element, the larger the undercut for the mechanical retention, but the gap at resin-metal interface was also increased. Conclusion: Within the limitations of this study, 0.2mm retention crystals were most effective in improving the resin-metal bond strength.

COMPARATIVE STUDY ON THE SHEAR BOND STRENGTH OF ALL-IN-ONE DENTIN BONDING SYSTEM APPLIED TO PRIMARY TEETH (유치에 적용된 All-in-One 상아질 접착 시스템의 전단강도에 관한 비교연구)

  • Kim, Dong-Cheol;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.560-568
    • /
    • 2007
  • This study was performed to compare the shear bond strength of primary enamel & dentin treated by AQ Bond $Plus^{TM}$ and G $Bond^{TM}$, recently developed 6th generation dentin bonding system, to that of Single $Bond^{TM}$ being widely used. Also by observing the resin tag under scanning electron microscope, Resin tags of each material were also observed under scanning electron microscope and compared to one another. The possibility of clinical application of All-in-One system which has an advantage to reduce chair-time for children with difficult behavior pattern was evaluated. The results obtained are as follows: 1. No statistically significant difference between groups was found in shear bond strength of primary enamel. 2. In primary dentin, the shear bond strength of AQ Bond $Plus^{TM}$ was $1.15\;{\pm}\;0.37\;MPa$, G $Bond^{TM}$ was $1.69\;{\pm}\;0.74\;MPa$ and Single $Bond^{TM}$ was $0.56\;{\pm}\;0.11\;MPa$. There were no statistical difference between AQ Bond $Plus^{TM}$ and G $Bond^{TM}$ and between G $Bond^{TM}$ and Single $Bond^{TM}$, whereas statistically significant difference was found between AQ Bond $Plus^{TM}$ and Single $Bond^{TM}$. 3. Under scanning electron microscope, resin tags observed in AQ Bond $Plus^{TM}$ and G $Bond^{TM}$ were very weak and tangled while strong and thick tags were shown with many lateral branches in Single $Bond^{TM}$. The result of the present study coupled with the advantages of less working time over the previous generation suggests that All-in-One system might be effectively used in adhesive dental procedures for primary teeth.

  • PDF

EFFECTS OF VARIOUS CEMENTS AND THERMOCYCLING ON RETENTIVE STRENGTHS OF CEMENTED IMPLANT-SUPPORTED PROSTHESES (시멘트 유지형 임플란트 보철물의 유지력에 시멘트의 종류와 열순환이 미치는 영향에 관한 연구)

  • Cho Jae-Ho;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.466-475
    • /
    • 2003
  • Statement of problem : In cemented implant-supported porstheses, it is still controversy what kind of cement to use. However, the effect of thermocycling on retentive strength of cemented implant-supported prostheses has not been well investigated. Purpose : This study was tested to evaluate the effects of various cements and thermocycling on retentive strengths of cemented implant-supported prostheses. Material and methods : Prefabricated implant abutments, height 5mm, diameter 6mm, 3-degree taper per side, with light chamfer margins were used. Ten specimens of two-unit fred partial denture were fabricated. The luting agents used for this study were three provisional luting agents which were Temp bond, Temp bond NE, IRM and four permanent luting agents which were Panavia F, Fuji-cem, Hy-bond Zinc cement, Hy-bond Polycarboxylate cement. 24 hours after cementation. the retentive strengths were measured by the universal testing machine with a cross-head speed of 0.5mm/min. Then cementation procedures were repeated and specimens were thermocycled 1000 times at temperature of $5^{\circ}C$ and $55^{\circ}C$. After thermocycling, the retentive strengths were measured. Results : Before thermocycling, the retentive strengths were decreased with the sequence of Panavia F. Fuji-cem. Hy-bond Zinc cement. Hy-bond Polycarboxylate cement, IRM, Temp bond NE and Temp bond, and there were significant differences among each groups(p<0.05). After thermocycling, the retentive strengths were decreased with the sequence of Panavia F. Fuji-cem, Hybond Zinc cement, Hy-bond Polycarboxylate cement, IRM, Temp bond NE and Temp bond, and there were no significant differences among Panavia F, Fuji-cem and Temp bond NE, Temp bond(p>0.05). The retentive strengths before and after thermocycling showed significant differences in Hy-bond Zinc cement. IRM, Temp bond NE and Temp bond(p<0.05). Conclusion : Within the limitation of this study, thermocycling do not affect the retentive strengths of permanent luting agents but the retentive strengths of temporary cements were reduced significantly after thermocyling.

Comparison of Push-out Bond Strengths According to Relining Procedure and Cement Type on Fiber Post (Fiber post의 Relining 방법과 시멘트 유형에 따른 Push-out Bond Strength의 비교)

  • Kang, Hyun-Young;Cho, So-Yeun;Yu, Mi-Kyung;Lee, Kwang-Won;Kim, Kyoung-A
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.3
    • /
    • pp.253-265
    • /
    • 2011
  • When restoring endodontically treated teeth is the mismatch between fiber post size and post space diameter, the resin cement layer is excessively thick in post space and voids are likely to form in it, thus predisposing to de-bonding. The method to overcome this problem is to reline the fiber post with composite resin. This individual anatomic post improves the adaptation of post to root walls and decreases the resin cement thickness. The purpose of this in vivo study was to evaluate the push-out bond strength of fiber post according to relining procedure and luting agents type used for simplicity of clinical procedure. Forty-two extracted teeth were divides into six groups.(n=7) A1: relined fiber post cemented with Luxacore/all-bons 2, A2: non-relined fiber post cemented with Luxacore/all-bond2, B1: relinind fiber post cemented with Calibra/XP-bond, B2: non-relined fiber post cemented with Calibra/XP-bond, C1: relined fiber post cemented with RelyX Unicem, C2: non-relined fiber post cemented with RelyX Unicem Push-out bond strength was affected by interaction between relining procedure and luting agent type. Relined fiber post presented higher push-out bond strength value than non-relined fiber post and statically significant differences(p<0.05) Cementation with RelyX Unicem showed significantly higher bond strength than other luting agents(p<0.05).

Chemical compatibility of interim material and bonding agent on shear bond strength (임시수복 재료와 본딩제의 화학적 호환성이 전단결합강도에 미치는 영향)

  • Lee, Jonghyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.4
    • /
    • pp.293-300
    • /
    • 2016
  • Purpose: The purpose of this study is finding proper bonding agents to be used when adding bis-acryl composite provisional materials. Materials and Methods: Three bonding agents with different chemical compositions were included in this study. Forty disk shaped specimens of bis-acryl composite provisional material were prepared and divided into 4 groups according to the bonding agents. Control group didn't have bonding agent. Through the Teflon mould with 4.0 mm diameter hole with 4.0 mm thickness the same bis-acryl composite provisional material was added on the disks after the surface of each specimen was treated with designated bonding agent according to the manufacturer's instructions. Shear bond test was performed and the fractured surfaces were inspected with a microscope. One-way analysis of variance was conducted and the result was further analysed with Turkey post hoc test at the significance level of 0.05. Results: The highest strength was acquired from the specimens bonded with chemical cure system and it was statistically significant (P < 0.05). This group showed 100% cohesive failures. The lowest bonding strength was recorded from the specimens used conventional light cure bonding agent, and this group's result was similar with the control group. The group used a light cure bonding agent claiming improved compatibility revealed significantly higher bond strength to the traditional light cure bonding agent group in a statistically significant way (P = 0.043). Conclusion: According to the bonding agent used the shear bond strength was significantly affected. Therefore the choice of proper bonding agent is important when hiring a bonding agent to add bis-acryl composite provisional materials.

Estimation of Bond Performance Improvement by Surface Treatment Equipments and Polymer Content by Boned Concrete Overlays (접착식 콘크리트 덧씌우기 경계면 처리 방식 및 폴리머 혼입률에 따른 부착성능 평가)

  • Jung, Won Kyong;Kim, Hyun Seok;Kwon, Oh Seon;Kim, Hyung Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • Repair methods of aging concrete pavement are generally used composite structure pavements, such a composite structure is subjected to a large impact on the mechanical behavior and ensure long-term commonality integrated under vehicle loads, environmental loads of the public in accordance with the bond strength between old and new concrete. A common of bonded concrete overlays that are currently available is Interface arrangements using a variety of equipment to ensure the excellent bond strength between old and new concrete than standard concrete, mixed with a material such as a polymer in order to improve the adhesion with the material itself. However, these method of constructions are being applied, depending on the developer site presents no special specifications apply when a specific application criteria objectively, this is due to the situation of each individual method, which is based on the difficulty in quality control of the site manager. In this study by performing a field test for polymer content via the variables that contribute most significantly to ensure bond strength and the field element core of the interface processing method and materials to ensure bond strength between the old and the new concrete, it was to derive the construction site construction method that can improve the performance of the bond strength through a review of the construction around the correlations and the bond strength according to the effective performance analysis of the conventional surface treatment process and variation of polymer volume fraction.

AN EXPERIMENTAL STUDY OF THE BOND STRENGTH OF DENTURE TEETH BONDED TO DENTURE BASE MATERIALS (의치용 인공치아와 의치상용 레진간의 결합강도에 관한 실험적 연구)

  • Lee, Joo-Hee;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.464-474
    • /
    • 1996
  • A principal advantage of a plastic tooth over a porcelain tooth should be its ability to bond to the denture base material. But plastic teeth could craze and wear easily, so more abrasion resistant plastic denture teeth have been developed. To resist abrasion, the degree of cross-linking was increased, but bonding to denture base meterial became more difficult. The purpose of this study was to evaluate the bond strength of plastic teeth and abrasion resistant teeth bonded to heat-curing, self-curing and light-curing denture base material. Denture tooth molds were chosen that had a>8mm diameter. The denture teeth was bonded to three denture base materials and then machined to the same dimensions. Three denture base materials were used as control groups. Prior to tensile testing, the specimens were thermocycled between $5^{\circ}C\;and\;55^{\circ}C$ for 1000cycles. Tensile testing was performed on an Instron Universal testing mechine. Experimental group ; plastic teeth(Justi Imperial)+heat-curing resin(Lucitone 199) plastic teeth(Justi Imperial)+light-curing resin(Triad) plastic teeth(Justi Imperial)+self-curing resin(Vertex SC) abrasion resistant teeth(IPN)+heat-curing resin(Lucitone 199) abrasion resistant teeth(IPN)+light-curing resin(Triad) abrasion resistant teeth(IPN)+self-curing resin(Vertex SC) Control group ; heat-curing resin(Lucitone 199) light-curing resin (Triad) self-curing resin(Vertex SC). The results were as follows : 1. The denture teeth bonded to heat-curing resin showed the cohesive failure and those bonded to the other resins showed adhesive failure. 2. Tensile bond strength of the plastic teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 3. Tensile bond strength of the abrasion resistant teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 4. Tensile bond strength of the plastic teeth to self-curing resin was not significantly different from that of the abrasion-resistant teeth(p>0.05). 5. Tensile bond strength of the plastic teeth to light-curing resin was significantly greater than that of the abrasion resistant teeth(p<0.01).

  • PDF