• Title/Summary/Keyword: bond effect

Search Result 1,652, Processing Time 0.028 seconds

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.111-124
    • /
    • 2003
  • Processes that cause immobilization of contaminants in soil are of great environmental importance because they may lead to a considerable reduction in the bioavailability of contaminants and they may restrict their leaching into groundwater. Previous investigations demonstrated that pollutants can be bound to soil constituents by either chemical or physical interactions. From an environmental point of view, chemical interactions are preferred, because they frequently lead to the formation of strong covalent bonds that are difficult to disrupt by microbial activity or chemical treatments. Humic substances resulting from lignin decomposition appear to be the major binding ligands involved in the incorporation of contaminants into the soil matrix through stable chemical linkages. Chemical bonds may be formed through oxidative coupling reactions catalyzed either biologically by polyphenol oxidases and peroxidases, or abiotically by certain clays and metal oxides. These naturally occurring processes are believed to result in the detoxification of contaminants. While indigenous enzymes are usually not likely to provide satisfactory decontamination of polluted sites, amending soil with enzymes derived from specific microbial cultures or plant materials may enhance incorporation processes. The catalytic effect of enzymes was evaluated by determining the extent of contaminants binding to humic material, and - whenever possible - by structural analyses of the resulting complexes. Previous research on xenobiotic immobilization was mostly based on the application of $^{14}$ C-labeled contaminants and radiocounting. Several recent studies demonstrated, however, that the evaluation of binding can be better achieved by applying $^{13}$ C-, $^{15}$ N- or $^{19}$ F-labeled xenobiotics in combination with $^{13}$ C-, $^{15}$ N- or $^{19}$ F-NMR spectroscopy. The rationale behind the NMR approach was that any binding-related modification in the initial arrangement of the labeled atoms automatically induced changes in the position of the corresponding signals in the NMR spectra. The delocalization of the signals exhibited a high degree of specificity, indicating whether or not covalent binding had occurred and, if so, what type of covalent bond had been formed. The results obtained confirmed the view that binding of contaminants to soil organic matter has important environmental consequences. In particular, now it is more evident than ever that as a result of binding, (a) the amount of contaminants available to interact with the biota is reduced; (b) the complexed products are less toxic than their parent compounds; and (c) groundwater pollution is reduced because of restricted contaminant mobility.

  • PDF

A Study on the Catalytic Characteristics of Oxygen Reduction in an Alkaline Fuel Cell II. Characterization of La0.6Sr0.4Co1-xFexO3 by using XRD, TG, and TPR (알칼리형 연료전지에서 산소환원에 미치는 촉매 특성 연구 II. XRD, TG, TPR를 이용한 La0.6Sr0.4Co1-xFexO3의 특성 분석)

  • Moon, Hyeung-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.554-564
    • /
    • 1996
  • Oxygen reduction in an alkaline fuel cell was studied by using perovskite of $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35, and 0.50) as an oxygen electrode catalyst. The changes in the catalytic properties as a function of Fe content were investigated by XRD, TG, and TPR. XRD patterns gave different lattice parameters of the catalysts. TG study revealed that Fe was so stabilized in the perovskite structure as to be hardly reduced even up to $900^{\circ}C$, and the amount of oxygen which was eliminated at high temperature increased with the fraction of Fe because Fe induced the increase of Co-O binding energy. From TPR study, ${\alpha}$-(low temperature peak) and ${\beta}$-(high temperature peak)states were observed. The bond strength of the ${\beta}$-species which was associated strongly with Co of the perovskite increased proportionally with the fraction of Fe. The ${\alpha}$-species, reversible oxygen, was the active species in the oxygen reduction. The ${\alpha}$-peak temperature which reflected the binding energy between Co and ${\alpha}$-state oxygen moved to lower temperature with the increase of lattice parameter of the catalytst due to the increase of Fe content. The decrease in the binding energy increased the activity in the oxygen reduction, but the decrease of ${\alpha}$-species with the increase of Fe content decreased the activity. The increase in the surface area with Fe content had little effect on the activity.

  • PDF

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Studies on the Effects of Copper on the Lactate Dehydrogenase and Esterase Isozymes in Various Tissues of Carassius carassius (붕어(Carassius carassius)의 조직내 젖산수소이탈효소와 에스테라아제 아이소자임에 미치는 동의 영향에 관한 연구)

  • Lee, Choon-Koo;Choo, Il-Young
    • The Korean Journal of Zoology
    • /
    • v.16 no.2
    • /
    • pp.79-96
    • /
    • 1973
  • In order to elucidate the effects of copper on Corassius carassius, the following were studied: 1) lactate dehydrogenase isozyme patterns by cellulose acetate electrophoresis, 2) LDH activity and copper effect on LDH enzyme system y spectrophotometry, 3) esterase isozyme patterns by agar thin layer electrophoresis, 4) hemoglobin patterns by starch gel electrophoresis, and 5) histological study. 1. There were two bands of LDH isozymes (LDH-3 and LDH-5) in the gill, three bands (LDH-2, LDH-4, and LDH-5) in the liver, and two bands (LDH-3 and LDH-4) in the muscle of the normal fish. The LDH-1 bond was not found in the above three tissues. When the fish were exposed to copper, LDH-3 appeared in the liver, LDH-5 in the muscle, but no new LDH band appeared in the gill. 2. The sepcific activities of the LDH were lowest in the gill and highest in the muscle of the normal fish, and they were gradually decreassed in the gill and highest in the muscle of the normal fish, and they were gradually decreased in the liver and mucle except in the gill from 1-day to 10-day exposure to copper. It indicates that LDH activities in the liver and muscle of the fish were inhibited by copper. 3. Through in vitro experiment, it is clear that the decrease of the LDH activities of the liver and muscle of the fish exposed to copper is mainly caused by the inhibition on the M-LDH in the fish. 4. The numbers of the esterase isozyme bands of the gill, liver, muscle, blood, brain, and kidney of the normal fish were 3, 6, 2, 2, 2, and 2 respectively, and these numbers were the same as those exposed to copper. The relative mobilities of the esterase bands in the gill, liver, blood, and kidney of the exposed group were different from those of the control. 5. There was one hemoglobin band on the anode in the normal fish. It seems that the nobility of hemoglobin band of the fish exposed to copper was slightly faster than that of the normal fish. 6. The normal gill lamellae of the fish consisted of centrally located pillar cells and a number of mucus cells. When the fish were exposed to copper, the epithelial layer was divorced first, disintegrated, and then destroyed completely. 7. The liver of the normal fish had prominent central veins, cords of hepatic cells, and sinusoids. When the fish were exposed to copper, numerous droplets of fat appeared in the cells around the central vein of the liver. It is assumed that the fatty droplets were accumulated by the lesion due to fatty metamorphosis of the liver caused by copper. 8. There was no histological difference between the muscle of the normal fish and that of the fish exposed to copper. 9. In the normal fish, the tubules of the kidney were surrounded by hemopoetic tissues. However, the kidney tissue of the fish exposed to copper received some damage on the proximal tubules. Since the tubule cells were reduced in height, the lumens of the tubules were enlarged. Consequently many proximal tubules exhibited some pink-stained granular casts and various stages of degeneration.

  • PDF

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

EFFECT OF LIGHT IRRADIATION MODES ON THE MARGINAL LEAKAGE OF COMPOSITE RESIN RESTORATION (광조사 방식이 복합레진 수복물의 변연누출에 미치는 영향)

  • 박은숙;김기옥;김성교
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • The aim of this study was to investigate the influence of four different light curing modes on the marginal leakage of Class V composite resin restoration. Eighty extracted human premolars were used. Wedge-shaped class Y cavities were prepared on the buccal surface of the tooth with high-speed diamond bur without bevel. The cavities were positioned half of the cavity above and half beyond the cemento-enamel junction. The depth, height, and width of the cavity were 2 mm, 3 mm and 2 mm respectively. The specimens were divided into 4 groups of 20 teeth each. All the specimen cavities were treated with Prime & Bond$^{R}$ NT dental adhesive system (Dentsply DeTrey GmbH, Germany) according to the manufacturer's instructions and cured for 10 seconds except group VI which were cured for 3 seconds. All the cavities were restored with resin composite Spectrum$^{TM}$ TPH A2 (Dentsply DeTrey GmbH, Germany) in a bulk. Resin composites were light-cured under 4 different modes. A regular intensity group (600 mW/${cm}^2$, group I) was irradiated for 30 s, a low intensity group (300 mW/${cm}^2$, group II) for 60 s and a ultra-high intensity group (1930 mW/${cm}^2$, group IV) for 3 s. A pulse-delay group (group III) was irradiated with 400 mW/${cm}^2$ for 2 s followed by 800 mW/${cm}^2$ for 10 s after 5 minutes delay. The Spectrum$^{TM}$ 800 (Dentsply DeTrey GmbH, Germany) light-curing units were used for groups I, II and III and Apollo 95E (DMD, U.S.A.) was used for group IV. The composite resin specimens were finished and polished immediately after light curing except group III which were finished and polished during delaying time. Specimens were stored in a physiologic saline solution at 37$^{\circ}C$ for 24 hours. After thermocycling (500$\times$, 5-55$^{\circ}C$), all teeth were covered with nail varnish up to 0.5 mm from the margins of the restorations, immersed in 37$^{\circ}C$, 2% methylene blue solution for 24 hours, and rinsed with tap water for 24 hours. After embedding in clear resin, the specimens were sectioned with a water-cooled diamond saw (Isomet$^{TM}$, Buehler Co., Lake Bluff, IL, U.S.A.) along the longitudinal axis of the tooth so as to pass the center of the restorations. The cut surfaces were examined under a stereomicroscope (SZ-PT Olympus, Japan) at ${\times}$25 magnification, and the images were captured with a CCD camera (GP-KR222, Panasonic, Japan) and stored in a computer with Studio Grabber program. Dye penetration depth at the restoration/dentin and the restoration/enamel interfaces was measured as a rate of the entire depth of the restoration using a software (Scion image, Scion Corp., U.S.A.) The data were analysed statistically using One-way ANOVA and Tukey's method. The results were as follows : 1. Pulse-Delay group did not show any significant difference in dye penetration rate from other groups at enamel and dentin margins (p>0.05) 2. At dentin margin, ultra-high intensity group showed significantly higher dye penetration rate than both regular intensity group and low intensity group (p<0.05). 3. At enamel margin, there were no statistically significant difference among four groups (p>0.05). 4. Dentin margin showed significantly higher dye penetration rate than enamel margin in all groups (p<0.05).

  • PDF

Behavior of Steel Fiber-Reinforced Concrete Exterior Connections under Cyclic Loads (반복하중을 받는 강섬유 보강 철근콘크리트 외부 접합부의 거동 특성)

  • Kwon, Woo-Hyun;Kim, Woo-Suk;Kang, Thomas H.K.;Hong, Sung-Gul;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • Beam-column gravity or Intermediate Moment frames subjected to unexpected large displacements are vulnerable when no seismic details are provided, which is typical. Conversely, economic efficiency of those frames is decreased if unnecessary special detailing is applied as the beam and column size becomes quite large and steel congestion is caused by joint transverse reinforcement in beam-column connections. Moderate seismic design is used in Korea for beam-column connections of buildings with structural walls, which are to be destroyed when the unexpected large earthquake occurs. Nonetheless, performance of such beamcolumn connections may be substantially improved by the addition of steel fibers. This study was conducted to investigate the effect of steel fibers in reinforced concrete exterior beam-column connections and possibility for the replacement of some joint transverse reinforcement. Ten half-scale beam-column connections with non-seismic details were tested under cyclic loads with two cycles at each drift up to 19 cycles. Main test parameters used were the volume ratio of steel fibers (0%, 1%, 1.5%) and joint transverse reinforcement amount. The test results show that maximum capacity, energy dissipation capacity, shear strength and bond condition are improved with the application of steel fibers to substitute transverse reinforcement of beam-column connections. Furthermore, several shear strength equations for exterior connections were examined, including the proposed equation for steel fiber-reinforced concrete exterior connections with non-seismic details.

The effect of recapitalization on capital structure decision and corporate value in Korean Firms (한국기업의 자본재조정이 자본구조 의사결정과 기업가치에 미치는 영향분석)

  • Kim, Jooyul;Kim, Dongwook;Kim, Byounggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.163-174
    • /
    • 2017
  • This study analyzed how Korean firms' recapitalization affects their capital structure decision and firm value. Recapitalization was categorized into three groups according to the influence of the debt to equity ratio: debt ratio-increasing-recapitalization(capital reduction with refund, cash dividend), debt ratio-unchanging-recapitalization (capital reduction without refund, retirement of repurchased stocks), and debt ratio-decreasing-recapitalization(exercise the rights for convertible bonds, bond with stock warrants, exchangeable bonds and stock options). This article highlights how the relationship between the firms' recapitalization and the capital structure decision driven by the change in debt to equity ratio through the recapitalization should affect the firm value. The whole recapitalization sample used for this analysis comprised 22,814 enterprises listed on the Korea Exchange that were analyzed over the 16-year period from 2000 to 2015. To summarize the results of this Panel Data Analysis, firstly, when a firm executes debt ratio-increasing-recapitalization and debt ratio-decreasing-recapitalization at the period of t-1, the debt to equity ratio, which is increased or decreased, should affect the firm's debt capacity in the same period, then, at the period of t, the firm establishes a leverage policy to readjust the debt to equity ratio the other way around. These adjustments of debt-paying-ability from the leverage policy, including the capital structure decision, finally affect the firm value. Secondly, when a firm implements the debt ratio-unchanging-recapitalization in the period of t-1, the debt to equity ratio, which is neutral, should not affect the firm's capital structure decision. But, the firm value is positively affected by the influence of that recapitalization. Conclusively, we acknowledge a firm which carries out the recapitalization balances its capital structure to the optimal level of leverage and that the capital structure decision positively affects the corporate value.

Simultaneous Oxidation of NO, CO, and CH4 over Mn-Cu/Al2O3 Catalyst (Mn-Cu/Al2O3 촉매 상에서 NO, CO 및 CH4 동시 산화)

  • Ji Eun Jeong;Chang-Yong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Mn-M/Al2O3 (M = Cu, Fe, Co, and Ce) catalysts were prepared for simultaneous oxidation of NO, CO, and CH4, and their oxidation activities were compared. The Mn-Cu/ Al2O3 catalyst with the best simultaneous oxidation activity was characterized by XRD, Raman, XPS, and O2-TPD analysis. The result of XRD indicated that Mn and Cu existed as complex oxides in the Mn-Cu/Al2O3 catalyst. Raman and XPS results showed that electron transfer between Mn ions and Cu ions occurred during the formation of the Mn-O-Cu bond in the Mn-Cu/Al2O3 catalyst. The XPS O 1s and O2-TPD analyses showed that the Mn-Cu/Al2O3 catalyst has more adsorbed oxygen species with high mobility than the Mn/Al2O3 catalyst. The high simultaneous oxidation activity of the Mn-Cu/Al2O3 catalyst is attributed to these results. Gas-phase NO promotes the oxidation reactions of CO and CH4 in the Mn-Cu/Al2O3 catalyst while suppressing the NO oxidation reaction. These results were presumed to be because the oxidized NO was used as an oxidizing agent for CO and CH4. On the other hand, the oxidation reactions of CO and CH4 competed on the Mn-Cu/Al2O3 catalyst, but the effect was not noticeable because the catalyst activation temperature was different.