• Title/Summary/Keyword: bond crack

Search Result 232, Processing Time 0.029 seconds

Properties of Specialty Cellulose Fiber Reinforced Concrete at Early Ages (특수 가공된 셀룰로오스섬유보강 콘크리트의 초기 특성)

  • 원종필;박찬기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.349-354
    • /
    • 1999
  • Specialty cellulose fibers processed for the reinforcement of concrete offer relatively high levels of elastic modulus and bond strength. The hydrophilic surfaces of specialty cellulose fibers facilitate their dispersion and bonding in concrete. Specialty cellulose fibers have small effective diameters which are comparable to the cement particle size, and thus promote close packing and development of dense bulk and interface microstructure in the matrix. The relatively high surface area and the close spacing of specialty cellulose fibers when combined with their desirable mechanical characteristic make them quite effective in the suppression and stabilization of microcracks in the concrete matrix. The properties of fresh mixed specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to the restrained shrinkage crack reduction potential of cement composites at early age and theirs evaluation are presented in this paper. Results indicated that specialty cellulose fiber reinforcement showed an ability to reduce the total area significantly (as compared to plain concrete and polypropylene fiber reinforced concrete.

  • PDF

A study on the improvement for performance of floor finishing materials using poly urethane with water reacting urethane (수반응 우레탄과 바닥용 경질 폴리우레탄을 이용한 바닥마감재의 성능향상에 관한 실험적 연구)

  • Kang, Hyo-Jin;Park, Jin-Sang;Park, Jong-Ook;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.653-656
    • /
    • 2006
  • It is necessary for the new material and construction concept to make up for weak point which related to high durability and finish ability to solve exposure limit of exist construction method. This paper is deal with performance test(tier load, anti abrasion, anti impact, permeability, bond test) compositive using for water reacting soft urethane and rigid urethane to improve the exist problem which are crack movement, adhesive on the wet surface, impact and abrasion by tier load. It is getting decreasing demage compare with other exist materials after test by transfer load, movement and impact.

  • PDF

Behavior of Mechanical Anchorage Surface-Embedded in Concrete for Post-tensioning CFRP Strips (외부 프리스트레스트 탄소섬유판 정착장치의 콘크리트에 대한 정착성능)

  • You, Young-Chan;Choi, Ki-Sun;Park, Young-Hwan;Park, Jong-Sup;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.226-229
    • /
    • 2006
  • Strengthening with externally post-tensioned CFRP strips is more effective in increasing load carrying capacity of existing structures as well as reducing crack width and deflection. This study developed concrete embedded anchorages system for externally post-tensioned CFRP strips, and carried out experimental study to verify anchoring performance quantitatively. Through experimental results, anchoring strength of concrete embedded anchorage were quantified into shear strength of anchor bolt, bearing strength of concrete at the front of anchor plate and bond strength between anchor plate and concrete surface. In addition, overall anchoring performances according to combination of each unit force are examined in this study.

  • PDF

Bond characteristics by joint condition between old and. new concrete (신ㆍ구 콘크리트의 접합면 조건에 다른 부착특성)

  • 주봉철;김영진;김병석;박성룡;김덕진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.859-864
    • /
    • 2003
  • In these days, the deterioration of bridges make it necessary for decks to be replaced and it is inevitable to apply the precast decks to minimize the traffic control induced from the deck placement. This precast deck construction makes the physically discontinuous interface between old and new concrete. Usually, the adhesive force at this interface are ignored. However, for crack behavior and reliable long term behavior, it is required to evaluate the exact value of the cohesive force at the interface. This research investigates the cohesive characteristics at the interface. Four different interface surface conditions are tested and three different methods are used to measure the cohesive strength at the interface. In addition, cohesive characteristic at the surface between precast panels are investigated with different interface surface conditions.

  • PDF

A Fundamental study on the Optimum Performance of the Architectural Hybrid Water-proofing Systems (건축 복합방수공법의 최적성능에 관한 기초연구)

  • Lim, Seok Ho;Lim, Byung Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.123-130
    • /
    • 2005
  • The purpose of this study is to present the optimum performance of hybrid waterproofing technology, which is including material and construction method. Recently, Hybrid waterproofing technology is developed little by little in KOREA. But there is not any other criterion of performance and evaluation of this technology. So, It is needed that appropriate performance items is are settled urgently. This paper were obtained by the SPSS analysis. In this study the safety factor are more important performance of building waterproofing materials than durability comfortability and productivity. And results of this analysis showed that (1) safety performance consists of Fatigue resistance, Crack Control performance deterioration Processing of tensile performance, Compressive Strength test (2) comfortability performance consists of watertightness, bond performance (3) persistency performance consists of abrasion resistance, tensile performance, flexural strength (4) productivity performance consists of dimension, unit space weight.

An Experimental Study on the Evaluation of Effective Flexural Rigidity in Reinforced Concrete Members (철근콘크리트 부재의 유효 휨강성 평가를 위한 실험적 연구)

  • Kim Sang Sik;Lee Jin Seop;Lee Seung Bae;Jang Su Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.131-134
    • /
    • 2005
  • Until recently tensile stresses in concrete have not been considered, since it does not affect the ultimate strength of reinforced concrete flexural members significantly. However, to verify the load-deflection relationship, the effect of tensile stresses between reinforcing bars and concrete, so-called tension stiffening effect must be taken into account. Main parameters of the tension stiffening behavior are known as concrete strength, and bond between concrete and reinforcing bars. In this study a total of twenty specimen subject to bending was tested with different concrete strength, coverage, and de-bonding length of longitudinal bars. The effects of these parameters on the flexural rigidity, crack initiation and propagation were carefully checked and analyzed.

  • PDF

Simulation of corroded RC structures using a three-dimensional irregular lattice model

  • Kim, Kunhwi;Bolander, John E.;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.645-662
    • /
    • 2012
  • Deteriorative effects of steel corrosion on the structural response of reinforced concrete are simulated for varying degrees of corrosion. The simulation approach is based on a three-dimensional irregular lattice model of the bulk concrete, in which fracture is modeled using a crack band approach that conserves fracture energy. Frame elements and bond link elements represent the reinforcing steel and its interface with the concrete, respectively. Polylinear stress-slip properties of the link elements are determined, for several degrees of corrosion, through comparisons with direct pullout tests reported in the literature. The link properties are then used for the lattice modeling of reinforced concrete beams with similar degrees of corrosion of the main reinforcing steel. The model is successful in simulating several important effects of steel corrosion, including increased deflections, changes in flexural cracking behavior, and reduced yield load of the beam specimens.

Analytic Approach to Fiber Reinforced Composite under Cyclic Loading (반복하중을 받는 섬유 보강 콘크리트의 해석적 접근)

  • Shin, Kyung-Joon;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.669-672
    • /
    • 2006
  • Recently, large efforts have been made to develop and understand the behavior of Fiber Reinforced Concrete. As in the static loading cases, many researches have been done. However, a few studies have been conducted in cyclic behaviors of FRC. The main objective of the present work is to investigate the cyclic behavior of fiber reinforced concrete with theoretical method. First, cyclic constitutive relations which describe the crack bridging stress considering non-uniform interfacial bond degradation in short randomly oriented fiber reinforced matrix composites under uniaxial cyclic tension were considered. A cyclic degradation model of single fiber based on micromechanics also taken into consideration. As an example, fatigue analysis for ECC with PVA fiber was conducted using proposed equations. Results shows that proposed method can establish a basis for analyzing cyclic behavior of fiber reinforced composites.

  • PDF

Study on the Crack Shape of Concrete Exterior Beam-Column Joints Confined by Carbon Sheet Tube (카본 시트 튜브로 구속된 콘크리트 외부 보-기둥 접합부의 균열 양상에 대한 연구)

  • 문영균;박진영;이경훈;홍원기;김희철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.199-204
    • /
    • 2003
  • The purpose of this study is to experimentally investigate the structural performance of concrete exterior beam-column joints confined by carbon sheet tube. Four specimens were produced with different numbers of carbon sheet and the other specimen was produced with reinforced concrete. A hydraulic dynamic actuator with 30tonf capacity was used to cyclic lateral loading test. The experimental results represent that the numbers of carbon sheet have an influence the load and displacement capacity. However, the bond length of carbon sheets for connecting beam and column has to be considered to improve the capacity of joint.

  • PDF

Study on Peridynamic Interlayer Modeling for Multilayered Structures (가상 절점을 이용한 적층 구조물의 페리다이나믹 층간 결합 모델링 검토)

  • Ahn, Tae Sik;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.389-396
    • /
    • 2017
  • Peridynamics has been widely used in the dynamic fracture analysis of brittle materials. Recently, various crack patterns(compact region, floret, Hertz-type crack, etc.) of multilayered glass structures in experiments(Bless et al. 2010) were implemented with a bond-based peridynamic simulation(Bobaru et al.. 2012). The actual glass layers are bound with thin elastic interlayer material while the interlayer is missing from the peridynamic model used in the previous numerical study. In this study, the peridynamic interlayer modeling for the multilayered structures is proposed. It requires enormous computational time and memory to explicitly model very thin interlayer materials. Instead of explicit modeling, fictitious peridynamic particles are introduced for modeling interlayer materials. The computational efficiency and accuracy of the proposed peridynamic interlayer model are verified through numerical tests. Furthermore, preventing penetration scheme based on short-range interaction force is employed for the multilayered structure under compression and verified through parametric tests.