• 제목/요약/키워드: bond characteristics

검색결과 707건 처리시간 0.025초

Shear mechanism and bearing capacity calculation on steel reinforced concrete special-shaped columns

  • Xue, J.Y.;Chen, Z.P.;Zhao, H.T.;Gao, L.;Liu, Z.Q.
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.473-487
    • /
    • 2012
  • An experimental study was performed to investigate the seismic performance of steel reinforced concrete (SRC) special-shaped columns. For this purpose, 17 steel reinforced concrete special-shaped column specimens under low-cyclic reversed load were tested, load process and failure patterns of the specimens with different steel reinforcement were observed. The test results showed that the failure patterns of these columns include shear-diagonal compression failure, shear-bond failure, shear-flexure failure and flexural failure. The failure mechanisms and characteristics of SRC special-shaped columns were also analyzed. For different SRC special-shaped columns, based on the failure characteristics and mechanism observed from the test, formulas for calculating ultimate shear capacity in shear-diagonal compression failure and shear-bond failure under horizontal axis and oblique load were derived. The calculated results were compared with the test results. Both the theoretical analysis and the experimental results showed that, the shear capacity of T, L shaped columns under oblique load are larger than that under horizontal axis load, whereas the shear capacity of +-shaped columns under oblique load are less than that under horizontal axis load.

CHARACTERISTICS OF ROLLED H SECTION STEEL WELDS JOINTED BY NEWLY DEVELOPED FLASH WELDING SYSTEM

  • Kim, You-Chul;Oku, Kentaro;Umekuni, Akira;Fujii, Mitsuru
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.826-830
    • /
    • 2002
  • In the civil engineering and architecture fields, welding for large sectional members, such as I section steel and H section steel, are usually performed. a flash welding system, by which large I section steel or H section steel can be welded for a short time, was newly developed. In order to know the basic characteristics of welded joints, the specimens were cut out from flash welded joints, and tensile and fatigue experiments were carried out. The joint efficiency of welded joints by flash welding is 100% for the specimens with reinforcements and 93% for without reinforcements. The fatigue strength of welded joints with reinforcement was about 50% of that of the base metal. Removing the reinforcement generated by flash welding, fatigue strength of flash welded joints became 75% of that of the base metal. In case of flash welded joints with reinforcements, after a couple of fatigue cracks had propagated, ductile fracture occurred at the toe. In flash welded joints without reinforcements, fracture occurred at the bond or at HAZ (Heat Affected Zone). In case of fracture at the bond, fracture was brittle, and in case at HAZ, fracture was ductile.

  • PDF

밸브 운동부 구조 변화에 따른 압력특성에 관한 연구 (A Study on Pressure Characteristic in Various Inner Structure of Valves)

  • 허정규;오인호;양경욱
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.77-82
    • /
    • 2010
  • In general, the control valves are essential components in hydraulic systems. Structural changes within the valves remain a challenge because many parameters of valve tend to interact in terms of static and dynamic performance. Therefore, the valve characteristics is applied directly to the stability of hydraulic system. Inner structure of the valve which is used mainly in the industries is made up poppet type and spool type. This paper made a description of the method for numerical analysis and modeling of the valve with a built-in moving part of four-type. Based on the physical parameters of the valves, a numerical model of objected valve is developed using the bond graph method. It is to verified the results that the moving part of four-type has an effect on pressure and flow characteristics. Also, It is analyzed the results which has an effect on response characteristic by angular of poppet valve face and inertia variation of the valve with a built-in moving part. In the results, it is confirmed that the rising and settling time vary with the shape of moving part in valve.

열적 피로에 의한 전원코드의 발화 특성과 전기화재 분석에 관한 연구 (A Study on the Electrical-Fire Analysis and Firing Characteristics of Power Cord by Thermal Stress)

  • 최충석;송길목;김향곤;김동욱;김동우
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2003년도 춘계학술논문발표회논문집
    • /
    • pp.164-170
    • /
    • 2003
  • In this paper, we studied on the firing characteristics and electrical fire analysis of power cord deteriorated by thermal stress. The cross section of PVC insulating cord deteriorated by indirect flame decreased through heat convection. PVC insulating cord deteriorated by direct flame was bumpy shape. The exothermic peak of normal cord was shown at ($526.7^{\circ}C$), but the peaks or on(heat treatment temperature) ($150^{\circ}C$) cord was shown at ($299.6^{\circ}C$) and [$502.2^{\circ}C$]. The exothermic peaks according to high temperature were similar to those of amorphous carbon. In the FT-IR analysis, the absorption peak of normal cord indicated double bond of oxygen and carbon in benzene ring at 1720.0$cm^{1}$. As the HTT was high, the height of characteristic peak decreased and the peak of carbonyl group was shown at about 1625.7$cm^{-1}$. The characteristic peak of single bond(O-H) was shown at about 3479.2$cm^{-1}$. In case of the internal part of wire covering deteriorated by over current, the characteristic peak were shown at about 3417.3$cm^{-1}$ and 1600.2$cm^{-1}$. The above results show that we can distinguish the differences according to the fire pattern through the internalㆍexternal analysis of wire covering deteriorated by heat.

  • PDF

탄화규소 연삭숫돌의 파괴특성 (Fracture Characteristics of Carbonized Silicon Grinding Wheels)

  • 오동석;이병곤
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.45-51
    • /
    • 2002
  • In this study, the fracture characteristics of carbonized silicon grinding wheels were examined with tensile, compression, impact and bending test. The experiment was performed for the various grinding wheels with grain size #46, #80, and grade H, L, P, and one vitrified bond and one structure No.7. Also the centrifugal fracture rpm of carbonized silicon grinding wheels were measured and compared with the calculated values for the various wheel diameters and thicknesses. The results showed that the fracture tensile strength was $1.5~2.0Kg_f/mm^2$, and it was increased by decreasing grain size and increasing grade. The fracture compression loads were $1,600~3,000Kg_f$, and the inner stress was higher than outer's. And the absorption energy of impact test was 3.3~4.7 J, and it was increased by decreasing grain size but it was not effected by grade. The fracture bending stress was $0.1~0.2Kg_f/mm^2$, and it was increased by decreasing grain size and increasing grade. The centrifugal fracture rpm of carbonized silicon grinding wheel was about 8,500~12,000 and agreed well with the calculated value, and it was increased by decreasing diameter. However, it was almost constant for the reduction of wheel thickness.

Terahertz Spectral Characteristics of Electrolyte Solutions under Different Magnetic Fields

  • Shao, Siyu;Huang, Haiyun;Peng, Bo;Wang, Guoyang;Ye, Ping;Wang, Jiahui;Su, Bo;Cui, Hailin;Zhang, Cunlin
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.337-343
    • /
    • 2022
  • Microfluidic chips are new devices that can manipulate liquids at the micrometer level, and terahertz (THz) time-domain spectroscopy has good applicability in biochemical detection. The combination of these two technologies can shorten the distance between sample and THz wave, reduce THz wave absorption by water, and more effectively analyze the kinetics of biochemical reactions in aqueous solutions. This study investigates the effects of different external magnetic field intensities on the THz transmission characteristics of deionized water, CuSO4, CuCl2, (CH3COO)2Cu, Na2SO4, NaCl, and CH3COONa; the THz spectral intensity of the sample solutions decrease with increasing intensity of the applied magnetic field. Analysis shows that the magnetic field leads to a change in the dipole moment of water molecules in water and electrolyte solutions, which enhances not only the hydrogen-bond networking ability of water but also the hydration around ions in electrolyte solutions, increasing the number of hydrogen bonds. Increasing the intensity of this magnetic field further promotes the hydrogen-bond association between water molecules, weakening the THz transmission intensity of the solution.

화학적 친수성 처리율에 따른 재생 PET 섬유와 시멘트 복합재료와의 계면 인발 특성 (Interfacial Pullout Characteristics of Recycled PET Fiber With Hydrophilic Chemical Treatments in Cement Based Composites)

  • 원종필;박찬기;김윤정;박경훈
    • 콘크리트학회논문집
    • /
    • 제19권3호
    • /
    • pp.333-339
    • /
    • 2007
  • 본 논문은 재생 PET 섬유와 시멘트 복합재료와의 부착 성능을 향상시키고자 친수성 물질인 무수말레인산이 그라프트된 폴리프로필렌을 이용하여 친수성 처리 효과를 평가하였다. 실험 변수는 무수말레인산이 그라프트된 폴리프로필렌의 농도 0%, 5%, 10%, 15% 및 20%를 고려하였다. 부착 실험은 ICI SF-8에 따라 dog bone 공시체를 이용하였으며 부착강도 및 인발 에너지를 평가하였다. 실험 결과 부착 거동, 부착강도 및 계면 인성은 무수말레인산의 농도가 증가할수록 증가하는 효과를 보여주었다. 특히 15%에서 가장 큰 효과를 발휘하였으며 농도가 20%가 되면 오히려 부착성능이 감소하였다. 이는 재생 PET 섬유의 표면은 무수말레인산이 그라프트된 폴리프로필렌의 농도가 15% 이상이 되면 전체적으로 완벽하게 코팅이 가능하나 20% 코팅시에는 코팅 부분에서 부분적으로 균열이 발생하여 이를 통하여 부착하중 작용시 균열 부분을 통한 파괴가 발생하기 때문이다. 섬유 표면의 미소 구조 관찰에서 무수말레인산의 농도에 따른 재생 PET 섬유와 시멘트 복합재료와의 부착력 향상 메커니즘을 확인할 수 있다.

초고성능 콘크리트 하이브리드 사장교 바닥판 접합부 철근의 부착 성능에 대한 해석 (Analysis on Bond Characteristics of Reinforcements for UHPC Hybrid Cable-Stayed Bridge Deck Joints)

  • 선우윤호;박성균;곽임종;윤영수
    • 대한토목학회논문집
    • /
    • 제31권3A호
    • /
    • pp.207-214
    • /
    • 2011
  • 높은 강도와 우수한 연성을 가지는 초고성능 콘크리트(Ultra High Performance Concrete, UHPC)는 교량 부재의 두께 및 자중을 감소시키는데 적합하여, 교량의 장대화, 장경간화에 유리한 재료로 각광 받고 있다. 그러나 초고성능 콘크리트는 타설 과정이 복잡하고 어렵기 때문에 현장 타설을 통한 적용이 어려운 재료이다. 따라서 이에 대한 대안으로 프리캐스트 공법을 활용하는 방안이 중점적으로 연구되고 있다. 본 연구에서는 이와 같은 연구의 일환으로 초고성능 콘크리트의 재료 특성을 고려하여 하이브리드 사장교 바닥판 접합부의 철근 이음방법에 따른 구조적 성능을 평가하였다. 바닥판의 접합부에 적용할 수 있는 철근 이음을 형상에 따라 RC 부재에 적용하고, 이에 대한 비선형 해석을 통해 구조적 성능을 예측하였다. 또한 600 m급 사장교를 선정하여 단면력 해석을 통해 접합부에서 발생하는 부착 응력의 크기를 파악하고, 이를 접합부 형상에 따른 부착 강도의 크기와 비교하여 구조적 성능을 평가하였다. 해석 결과, 접합부 철근의 형상에 따라 U형 루프 타입이 가장 큰 하중을 견딜 수 있고, 직선형 타입이 가장 큰 부착 강도를 발현하는 것으로 예측되었다. 또한, 세 가지 형상의 접합부 철근 모두 초고성능 콘크리트의 사장교의 완성계에서 요구되는 부착 성능을 만족시켰다.

임상가를 위한 특집 1 - 간접 복합레진 수복의 이론과 실제 (Indirect Composite Restoration)

  • 황인남;장지현
    • 대한치과의사협회지
    • /
    • 제50권7호
    • /
    • pp.368-376
    • /
    • 2012
  • The demand for tooth-colored restorations has grown considerably during the last decade. Posterior composite restorations have risen in popularity as a result of the development of improved resin composites, bonding systems and operating techniques. A major limitation of direct composite restoration is the difficulty of controlling the polymerization shrinkage. To overcome this limitation, the indirect fabrication of a composite restoration and cementation with resin cement has been advocated. Unfortunately, the current available resin cements with indirect restorations do not always bond to dentin as strongly as dentin adhesive systems bond with direct resin composite restorations. Several procedural strategies have been proposed for indirect composite restoration. In this regard, the rationale for the indication, characteristics and clinical application is described in this paper. As a result, we will try to suggest the evidence-based guidelines for indirect composite restorations by reviewing each available indirect composite products, technical procedure and pronosis.

부착특성을 고려한 RC구조물의 유한요소 해석 (Finite Element Analysis of RC Structures considering Bond Characteristics)

  • 한상호
    • 콘크리트학회지
    • /
    • 제9권5호
    • /
    • pp.157-164
    • /
    • 1997
  • 일반적으로 콘크리트와 철근간의 경계면을 나타내는 유한요소법에는 균열의 부근에서 발생하는 부착열화 현상을 고려하지 않고 있다. 이것은 균열 부근에서 과도한 부착을 초래하고 , 국소 변형과 균열의 진전에도 영향을 준다. 본 연구에서는 철근콘크리트 구조물의 균열부근에서 일어나는 부착거동의 변화를 고려한 비선형 부착응력-미끄럼 모델을 제안하였다. 철근과 콘크리트간의 경계면에는 링크요소를 이용하였고, 링크의 특성은 철근을 가로지르는 균열의 상태에 따라 변하도록 조정하였다. 균열의 형성상태를 정량화하고, 부착거동을 두 포락선 1) 균열로부터 충분히 떨어진 위치에서의 부착상태를 모델링한 외연포락선, 2)횡균열면에 있어서의 부착상태를 모델링한 내연포락선의 사이에 변이시키기 위하여 비국소적 손상도 개념을 도입하였다. 이 방법의 유효성을 알아보기 위하여 편재하중을 받는 T형 교각의 실험 및 해석결과를 제시하였다. 제안된 모델의 결과를 실험결과와 비교하여 본 모델의 유용성을 검증하였다.