• Title/Summary/Keyword: bond characteristics

Search Result 706, Processing Time 0.035 seconds

Evaluation of the Crack Width of the Ultra High Performance Concrete(K-UHPC) Structures (초고성능 콘크리트(K-UHPC) 구조물의 균열폭 평가)

  • Kwahk, Imjong;Lee, Jungwoo;Kim, Jeesang;Joh, Changbin
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.99-108
    • /
    • 2012
  • Ultra High Performance Concrete(UHPC) has compressive strength higher than 180 MPa. The use of steel fibers in the dense UHPC matrix increases tensile strength, ductility and bond strength between UHPC and rebars. However, to apply the advance material behavior of UHPC to the design of a structure, we need design formulas. The crack formula is one of them. This paper investigated experimentally the bond behavior of a rebar and K-UHPC, the UHPC developed by Korea Institute of Construction Technology, and, modified CEB-FIP crack formula based on the test. In addition, this paper tested the crack behavior of K-UHPC reinforced with rebars to verify the modified crack formula. The result showed that the modified formula is reasonable to predict the width of cracks in the reinforced K-UHPC structures.

Response of lap splice of reinforcing bars confined by FRP wrapping: application to nonlinear analysis of RC column

  • Pimanmas, Amorn;Thai, Dam Xuan
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.111-129
    • /
    • 2011
  • This paper presents a nonlinear analysis of reinforced concrete column with lap splice confined by FRP wrapping in the critical hinging zone. The steel stress-slip model derived from the tri-uniform bond stress model presented in the companion paper is included in the nonlinear frame analysis to simulate the response of reinforced concrete columns subjected to cyclic displacement reversals. The nonlinear modeling is based on a fiber discretization of an RC column section. Each fiber is modeled as either nonlinear concrete or steel spring, whose load-deformation characteristics are calculated from the section of fiber and material properties. The steel spring that models the reinforcing bars consists of three sub-springs, i.e., steel bar sub-spring, lap splice spring, and anchorage bond-slip spring connected in series from top to bottom. By combining the steel stress versus slip of the lap splice, the stress-deformation of steel bar and the steel stress-slip of bars anchored into the footing, the nonlinear steel spring model is derived. The analytical responses are found to be close to experimental ones. The analysis without lap splice springs included may result in an erroneous overestimation in the strength and ductility of columns.

An Experimental Study on the Characteristics of a Composite Structure of Lattice Girder and Shotcrete (격자지보와 숏크리트 복합구조체의 특성 실험 연구)

  • Mun, Hong-Deuk;Baek, Yeong-Sik;Bae, Gyu-Jin
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.155-168
    • /
    • 1997
  • Lattice girder is a new steel support developed in Europe for the replacement of an existing H-shaped steel set, which is installed after tunnel excavation. Lattice girder has the following several advantages : 1. Lattice girder minimizes the amount of shotcrete shadow which happens to occur behind a steel support. 2. A triangular shape of lattice girder makes shotcrete placed efficiently. 3. Lattice girder provides a good bond strength for shotcrete, which makes the composite structure of lattice girder and shotcrete behave monolithic, and therefore, the rock load can be supported effectively by the lattice girder system, This paper presents the results from a model wall test, a strength test for shotcrete shot on the model wall and a strength test for the bond between lattice girder and shotcrete. These tests proved that lattice-girder system is superior to H-shaped steel-set system concerning the shotcrete rebound rate, the developed shotcrete strength and the adhesion characteristics.

  • PDF

A study on the improvement of the heat pipe performance with non metallic circumferential wick (非金屬 環狀윅을 갖는 히이트파이프 性能개선에 관한 연구)

  • 서정일;장영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.713-723
    • /
    • 1986
  • The purpose of this research was to study the heat transfer characteristics of heat pipe which used non-metallic(SiO$_{2}$), circumferential wick and meshed slab wick as ADI method and experimental results. Compared wick experimental data and results by ADI method showed the good agreement and ADI method was utilized in pridicting the performance of heat pipe. Also, ADI method was applied to predict heat pipe performance according to the various volume ratios of metallic bond. The heat transfer characteristics of heat pipe could be predicted by heat flux and superheat term below the maximum heat flux limit. According to the addition ratio of metallic bond, heat transfer ratio could be improved as 2-3 times and when heat conductivity ratio(K$_{b}$/K$_{a}$) was increased at 4-12 ratio, heat transfer was in creased as 1.7-2.4 times, and the prediction of heat transfer could be show as exponential type. In producting non-metallic wick used to low heat pipe, metallic bond which is the conductivity of good quality and enduring for high temperature will be improved as in important problem.

The defect detection circuit of an electronic circuit through impedance change detection that induces a change in S-parameter (S-parameter의 변화를 유도하는 임피던스 변화 감지를 통한 전자회로의 결함검출회로)

  • Seo, Donghwan;Kang, Tae-yeob;Yoo, Jinho;Min, Joonki;Park, Changkun
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.689-696
    • /
    • 2021
  • In this paper, in order to apply Prognostics and Health Management(PHM) to an electronic system or circuit, a circuit capable of detecting and predicting defect characteristics inside the system or circuit is implemented, and the results are described. In the previous study, we demonstrated that the frequency of the amplitude of S-parameter changed as the circuit defect progressed. These characteristics were measured by network analyser. but in this study, even if the same defect detection method is used, a circuit is proposed to check the progress of the defect, the remaining time, and the occurrence of the defect without large measurement devices. The circuit is designed to detect the change in impedance that generates changes of S-parameter, and it is verified through simulation using the measurement results of Bond-wires.

Factors Affecting Aging Anxiety in University Students (대학생의 노후 불안 영향 요인)

  • Yoon, Mi-Sun;Kim, Seong Yong
    • 한국노년학
    • /
    • v.39 no.1
    • /
    • pp.61-72
    • /
    • 2019
  • The purpose of this study was to find ways to reduce old age anxiety by identifying the differences between old age anxiety, grandparents' connection, filial piety, and characteristics, and by identifying factors that affect old age anxiety. The study participants conveniently labeled college students residing in Seoul, Gyeonggi and Chungcheong provinces, and collected data from 2 April to 15 June 2018 and distributed a total of 250 structured questionnaires and retrieved 235 copies to use part 213 for the final analysis. The analysis used SPSS 20.0 Version to obtain frequency, percentage, average, and standard deviation, and age anxiety according to the characteristics of the subject, grandparents and sense of filial piety were analyzed with t-test and ANOVA, and the correlation between aging anxiety, grandparents' bond and filial consciousness was confirmed as Pearson correlation co-efficient. To check the effects of aging anxiety, polylinearity was diagnosed and analyzed with Stepwise multiple regression. Research found that there were statistically significant differences in age insecurity according to majors, grandparents and ties by gender and filial piety by religion and grandparents. And the lower the bond with grandparents, the higher the filial piety, the higher the anxiety was.

Bond Characteristics and Splitting Bond Stress on Steel Fiber Reinforced Reactive Powder Concrete (강섬유로 보강된 반응성 분체 콘크리트의 부착특성과 쪼갬인장강도)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.651-660
    • /
    • 2014
  • Structural members using ultra high strength concrete which usually used with steel fiber is designed with guidelines based on several investigation of SF-RPC(steel fiber reinforced reactive powder concrete). However, there are not clear design method yet. Especially, SF-RPC member should be casted with steam(90 degree delicious) and members with SF-RPC usually used with precast members. Although the most important design parameter is development method between SF-RPC and steel reinforcement(rebar), there are no clear design method in the SF-RPC member design guidelines. There are many controversial problems on safety and economy. Therefore, in order to make design more optimum safe design, in this study, we investigated bond stress between steel rebar and SF-RPC according to test. Test results were compared with previously suggested analysis method. Test was carried out with direct pull out test using variables of compressive strength of concrete, concrete cover and inclusion ratio of steel fiber. According to test results, bond stress between steel rebar and SF-RPC increased with increase of compressive strength of concrete and concrete cover. Increasing rate of bond stress were decrease with increase of compressive strength of SF-RPC and concrete cover significantly. 1% volume fraction inclusion of steel fiber increase the bond stress between steel rebar and SF-RPC with two times but 2% volume fraction cannot affect the bond stress significantly. There are no exact or empirical equations for evaluation of SF-RPC bond stress. In order to make safe bond design of SF-RPC precast members, previously suggested analysis method for bond stress by Tepfers were evaluated. This method have shown good agreement with test results, especially for steel fiber reinforced RPC.

Modeling of Tension Stiffening Effect Based on Nonlinear Bond Characteristics in Structural Concrete Members (비선형 부착 특성에 기반한 철근콘크리트 부재의 인장증강효과 모델)

  • Lee, Gi-Yeol;Ha, Tae-Gwan;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.745-754
    • /
    • 2007
  • This paper presents a unified modeling technique for tension stiffening effect in structural concrete members. The model is mathematically derived from the bond stress-slip relationships which account for splitting crack. The relationships in CEB-FIP Model Code 1990 and Eurocode 2 are employed together with the assumptions of a linear slip distribution along the interface and the uniform condition of concrete tensile contribution for the mid section of cracked member at the stabilized cracking stage. With these assumptions, a model of tension stiffening effect is proposed by accounting for the force equilibrium and strain compatibility condition associated to the steel strain and concrete contribution by bond stress. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured behavior.