• Title/Summary/Keyword: bond action

Search Result 113, Processing Time 0.022 seconds

The Mechanism of Shear Resistance and Deformability for Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.233-240
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Soldering Process of Au Bump using Longitudinal Ultrasonic (종방향 초음파를 이용한 Au 범프의 솔더링 공정)

  • 김정호;이지혜;유중돈;최두선
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2004
  • A soldering process with longitudinal ultrasonic is conducted in this work using the Au bump and substrate. Localized heating of the solder is achieved and the stirring action due to the ultrasonic is found to influence the bond strength and microstructure of the eutectic solder The acceptable bonding condition is determined from the tensile strength. Since the multiple bonds can be formed simultaneously with localized heating, the proposed ultrasonic soldering method appears to be applicable to the high-density electronic package.

Bond Behavior of Recycled Coarse Aggregate Concrete Deteriorated by Freezing and Thawing (동결융해를 받은 순환 굵은골재 콘크리트의 부착성능)

  • Choi, Ki-Sun;Lee, Min-Jung;Yun, Hyun-Do;Kang, Ki-Woong;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1097-1100
    • /
    • 2008
  • The purpose of this study to investigate the bond strength of recycled coarse aggregate concrete deteriorated by freezing and thawing. Concrete specimens with recycled coarse aggregate representing lower limit of the quality standard (water absorption : 3.0%, specific gravity : $2.5g.cm^3$) were manufactured and tested. The replacement ratio (0, 30, 60 and 100%) of recycled coarse aggregate and freezing-thawing cycles were considered in this test. From the test results, it was found that the bond strength of normal strength concrete is not affected by the replacement ratio of recycled coarse aggregate under freezing and thawing conditions. Also, the bond strength of the natural and recycled coarse aggregate concrete using AE admixtures was not decreased by frost action.

  • PDF

Experiments on the Composite Action of Steel Encased Composite Column (강재 매입형 합성기둥의 합성작용에 관한 실험)

  • Min Jin;Jung In-Keun;Shim Chang-Su;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.393-400
    • /
    • 2005
  • Steel encased composite columns have been used for buildings and piers of bridges. Since the column section for the pier is relatively larger than that of building columns, economical steel ratio needs to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bond and friction. However, the behavior of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Bond strength obtained from the tests showed considerably higher value than the design value. Confinement, mechanical interlock and stud connectors Increased the shear strength and these values can be used effectively to obtain composite action of Steel Reinforced Concrete(SRC) columns.

Analysis of the Load Carrying Behavior of Shear Connection at the Interface of Encased Composite Beams (매입형 합성보의 전단합성거동에 대한 비교분석)

  • Shin, Hyun Seop;Heo, Byung Wook;Bae, Kyu Woong;Kim, Keung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.67-79
    • /
    • 2008
  • In this study, a bending test with three encased composite beams were carried out and analyzed using FEM in order to find how chemical adhesion, interface interlock, friction and composite action by shear studs contribute to stiffness, strength and composite action in the interface of encased compo site beams. The test and results of the FEM analysis showed that the difference in the ultimate moment capacity of the composite beams with and without studs is under 10%. The reason is that the effect of chemical adhesion, interface interlock, and friction in the interface on the composite action is so high that the encased beams have a moment capacity above some defined magnitude. Also, the increment of moment capacity up to plastic moment is not large and the increase of linearly proportioned.

Production of pediocin by Chemical Synthesis and Bactericidal Mode of Action

  • Koo, Min-Seon;Kim, Wang-June;Kwon, Dea-Young;Min, Kyung-Hee
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.149-153
    • /
    • 2001
  • To investigate the mode of bactericidal action for antimicrobial peptide, pediocin, synthetic and mutant pediocins were prepared by direct chemical synthesis. Native pediocin was purified from Pedio-coccus acidilactici M and its conformational structure and bactericidal functions were analyzed and compared to synthetic pediocin. Schematic mode of pediocin actions, how pediocin binds on the target cell membrane, penetrates and makes tunnel are proposed. For these purposes, primary and secondary structures of pediocin was analyzed and disulfide bond assignment was also done. The pediocin purified from P. acidilactici M had high effective bactericidal ability against gram positive bacteria, especially Listeria monocytogenes and was very stable at extreme pHs and even at high temperatures such as autoclaving temperature (121$^{\circ}C$). Pediocin was consisted of 44 amino acids with four cysteines. Novel synthetic peptides were achieved by solid phase peptide synthesis(SPPS) method. To explain the function of cysteine in C-terminal region, mutant pediocin, Ped[C24A+C44A], was synthesized and their structural and biological functions were analyzed. Second mutant pediocin, Ped[KllE], was prepared to explain the function of lysine at 11 of N-terminal part of pediocin, especially loop of $\beta$-sheet, and to predict the initial binding site of pediocin. The native and synthetic pediocins was showed random coil conformation by spectropolarimetry in moderate conditions. This conformation was observed in extreme conditions such as high temperature and low and high pHs, also. Circular dichroism(CD) data also showed the existence of $\beta$-turn structure in N-terminal part both native and synthetic pediocins. A structural model for pediocin predicts that 18 amino acids in the N-terminal part of the peptide assume a three-strand $\beta$-sheet conformation. This random coil in C-terminal part of pediocin was converted to folding structure, helix structure, in nonpolar solvents such as alcohol and TFE. The disulfide bond between $^{9}$ Cys and $^{14}$ Cys was concrete and inevitable, however, evidences of disulfide bond between $^{24}$ Cys and $^{44}$ Cys was not. Data of Ped[C24A+C44A], pediocin mutant showed that $^{44}$ Cys was required during killing the target cells but not inevitable, since Ped[C24A+C44A] still have bactericidal activity but much less than native pediocin. Another pediocin mutant, Ped[KllE], had still bactericidal activity, was controversial to propose that positive charge like as $^{11}$ Lys in loop or hinge in bacteriocin bound or helped to binding to microorganism with electrostatic interaction between cell membrane especially teichoic acid and positive amino acid nonspecifically. The conformation of pediocin among native, synthetic and mutant pediocins did not show big difference. The conformations between oxidized and reduced pediocin were almost similar regardless of native or synthetic.

  • PDF

MO Interpretation for Anticancer Activity of Pt-complexes (백금착물 (II) 의 항암성에 관한 분자궤도론적 해석 (제1보))

  • Byung-Kak Park;Yeo Hwhan-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.348-355
    • /
    • 1985
  • Extended Huckel Calculation of cis-and trans-dichloro diammine platinum(II), dichloroethylene diamine platinum(II) and their N-mono, di, tri and tetra-methylated or ethylated ones were carried out to investigate their anticancer activity. It was found that the net charge of two chlorine atoms in cis-isomers are greater than those in trans-ones and Pt-Cl bond energies of the former are less than that of the latter, indicating that Pt-Cl bond in cis-isomers has greater ionic character than that in trans-ones and Cl atoms in the former are easier to dissociated as Cl- than those in the latter. Also, the values of $b_{2g}-b_{1g}$ energy difference, ${\Delta}_1$ were found to be greater in cis-isomers than in trans-one without exceptions. For the substitution of methyl for H atom in ammine and ethylenediamine Pt-Cl bond strength shows the tendency to increase with increasing in number of methyl group. Accordingly, We believe that two Cl atoms in $PtLCl_2$-complexes (L: NH$_3$, en) are dissociated in the first step of the action of anticancer.

  • PDF

CHANGES IN INTRAPULPAL NERVE ACTIVITY AND OCCLUDING ASPECTS OF DENTINAL TUBULES BY DENTIN DESENSITIZER CONTAINING GLUTARALDEHYDE (Glutaraldehyde계 상아질 과민증 탈감작제에 의한 치수신경 활동성 변화 및 상아세관 폐쇄양상)

  • Kim, Jong-Hwa;Lee, Kwang-Won;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.505-516
    • /
    • 1996
  • The effects of application of dentin desensitizer containing glutaraldehyde (Gluma Desensitizer) and dentin adhesive system (All Bond 2) to the exposed dentin on the intradental nerve activity (INA) and the occluding aspects of dentinal tubules were investigated in cat canine teeth. Single pulp nerve units were dissected from the inferior alveolar nerve and indentified as $A{\delta}$-fiber units. The INAs elicited by 4M NaCl before and after the application of each experimental agent were compared. The morphological changes of exposed dentin surfaces and dentinal tubules in the dentin specimens used to record INAs were observed by SEM. The results obtained were as follows. 1. Eight $A{\delta}$-fiber units (conduction velocity: $8.0{\pm}4.0m$/sec) were identified. 4M NaCl evoked an irregular burst of action potentials which ceased immediately after washing. 2. In 4 $A{\delta}$-fiber units, the change of INA after the application of Gluma Desensitizer was $133.9{\pm}80.7%$ when it was compared with the INA before the application of the same agent. 3. In 4 $A{\delta}$-fiber units, application of All Bond 2 completely abolished the INA induced by 4M NaCl. 4. In specimens applied with Gluma Desensitizer, the formation of hybrid layer as well as the identification of resin penetration and reaction products with proteins in dentinal tubules were not clearly observed in interface between dentin and adhesive resin. In specimens applied with All Bond 2, the gap width of 2-$3{\mu}m$ was formed between exposed dentin and adhesive resin, and the hybrid layer and resin tags were not clearly formed either.

  • PDF

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 1: Experimental and analytical study

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong;Wang, Junyan
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.907-927
    • /
    • 2014
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. ULCC was adopted as the core material in the SCS sandwich composite beams to reduce the overall structural weight. Headed shear studs working in pairs with overlapped lengths were used to achieve composite action between the core material and steel face plates. Nine quasi-static tests on this type of SCS sandwich composite beams were carried out to evaluate their ultimate strength performances. Different parameters influencing the ultimate strength of the SCS sandwich composite beams were studied and discussed. Design equations were developed to predict the ultimate resistance of the cross section due to pure bending, pure shear and combined action between shear and moment. Effective stiffness of the sandwich composite beam section is also derived to predict the elastic deflection under service load. Finally, the design equations were validated by the test results.

Behavior and Capacity of Compression Lap Splice in Unconfined Concrete with Compressive Strength of 40 and 60 MPa (횡보강근이 없는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.291-302
    • /
    • 2009
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. New criteria for the compression lap splice including the effects of concrete strength are required for practical purpose of ultra-high strength concrete. Characteristics of compression lap splice have been extensively investigated and main parameters are derived. In addition, an experimental study has been conducted with column specimens in concrete strength of 40 and 60 MPa. The strength of the compression lap splice consists of bond and end bearing and two contributors are combined. Therefore, combined action of bond and end bearing should be assessed. Compared with tension splices, concrete strength significantly affects the strength of compression splices due to short splice length and existence of end bearing. Test results show that the splice strength can be evaluated to be proportional to square root of compressive strength of concrete. The stress states of concrete surrounding spliced bars govern the strengths of bond and end bearing. Because the axial stress of the concrete is relatively high, the splice strength is not dependent on clear spacing. End bearing strength is not affected by splice length and clear spacing and is expressed with a function of the square root of concrete strength. The failure mode of specimens is similar to side-face blowout of pullout test of anchors and the strength of end bearing can be evaluated using the equation of side-face blowout strength. Because the stresses developed by bond in compression splices are nearly identical to those in tension splices, strength increment of compression splices is attributed to end bearing only.