• Title/Summary/Keyword: bolting

Search Result 224, Processing Time 0.02 seconds

Natural Habitats' Characteristics of Allium grayi in Korea (한국 산달래의 자생 특성)

  • Kim, Kyung-Min;Kim, Chang-Kil;Oh, Jung-Youl
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.219-224
    • /
    • 2010
  • This study was carried out to develop the breeding and cultivation of Allium grayi by investigating its natural habitats in Korea. The number of sunny, half-shady, and shady natural habitats were 194 (64.0%), 96 (31.7%), and 13 (4.3%), respectively. Natural habitats included upland (51.2%), Buddhist temple (18.8%), mountain (11.6%), roadside (7.9%), river (5.9%), paddy field (2.3%), and seashore (2.3%). Natural habitats ranged widely in all areas between $33^{\circ}N{\sim}38^{\circ}N$ and $126^{\circ}E{\sim}130^{\circ}E$. Self-generation patterns included growing spontaneously with a 1~10m distance between plants, and there were 3~5 bulbils around each bulb. The sprout stage began in September and continued until March of next year in natural habitats. The bolting period was May, with the following three patterns: tuber (59.2%), flower and tuber (24.7%), and flower (16.1%).

Life history and growth pattern on the erigeron annuus (개망초 ( Erigeron annuus L. ) 의 生活史 및 生育特性)

  • Lee, Ho-Joon;Tae-Sung Kim
    • The Korean Journal of Ecology
    • /
    • v.14 no.2
    • /
    • pp.211-230
    • /
    • 1991
  • The germinatin of e. annuus continued from the middle ofmay to mid-october. The maximum germination occurred on the mid-july. The period bloom of was distingushed amongs the different growth forms ; a orm pr of biennial and a form of pr perennial flowering from the mid-may to mid-september, and a form ps biennial blossom from the beginning of October to earlynovember. the dispersal of seed for(a form pr)occurred from early June to the mid-september. A rotte, germinating from summer to autumn, could classified into several growth forms; individuals without a critical leaf area for bolting until september and October, become a form ps of biennial, whicth did not proceed toreproductive growth unitl the next year, even thought wintering. individuals flowered on 3 years after germination become a form pr of perennial. The growth formular of aform pr of bennial, grown in a pot was w=20.2[1+$3.36{\times}10^3$(-0.062t)]$^{-1}$. The maximum relative growth rate(rgr) was 0.062g/g/day and the maximum net assimlation rate(nar) 0.089g/g/day. Therelative growth among each organ was shown as R=0.12 $T^{1.15}$between the avove-ground part(t) and the below- ground part(r). the relation between the avove-ground part(t) and the ratio of stem weight(wi) was ws/wi=2.56 $T^{0.35}$. n.p.k. was largely distributed on a leaf throughoutthe total growth period. while growing, it tended to decrease on the vegetative organ gut vice versa on the reproductive organ. however, nitrogen was more widely distributed on a leaf then in the reproductive organ.

  • PDF

Experimental study of Hydraulic Cable Connection Systems with Re-tensioning and Wireless Monitoring (재긴장과 무선 모니터링이 가능한 유압식 케이블 접합부시스템의 실험에 대한 연구)

  • Kim, Min-Su;Lee, Ki-Hak;Kim, Seong-Beom;Lee, Sung-Min;Baek, Ki-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.71-79
    • /
    • 2011
  • Due to the self-equilibrium status of the cable system, the loss of the tensioning in the cable system results in other cables carrying larger tension forces than those initially calculated by structural engineers. Also, turn-buckle systems, which have been widely used to pre-tension and/or re-tension the cables, are limited to use for small cables and to provide a rough estimation for tension forces. In this study, the re-tensioning cable connection systems were developed to overcome the problems mentioned above. The main objective of the proposed system is to re-tension large cables and measure the exact amount of tension forces of the cable systems. This connection system is also combined with the wireless signal monitoring module so that engineers are able to measure the tension forces any place where the internet is available. This paper presents the development of the re-tensioning cable connection systems and experiment using the real-scale cable systems to verify the fe-tensioning and signal monitoring systems.

Investigating the supporting effect of rock bolts in varying anchoring methods in a tunnel

  • Wang, Hongtao;Li, Shucai;Wang, Qi;Wang, Dechao;Li, Weiteng;Liu, Ping;Li, Xiaojing;Chen, Yunjuan
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2019
  • Pre-tensioned rock bolts can be classified into fully anchored, lengthening anchored and point anchored bolts based on the bond length of the resin or cement mortar inside the borehole. Bolts in varying anchoring methods may significantly affect the supporting effect of surrounding rock around a tunnel. However, thus far, the theoretical basis of selecting a proper anchoring method has not been thoroughly investigated. Based on this problem, 16 schemes were designed while incorporating the effects of anchoring length, pretension, bolt length, and spacing, and a systematic numerical experiment was performed in this paper. The distribution characteristics of the stress field in the surrounding rock, which corresponded to various anchoring scenarios, were obtained. Furthermore, an analytical approach for computing the active and passive strengthening index of the anchored surrounding rock is presented. A new fully anchoring method with pretension and matching technology are also provided. Then, an isolated loading model of the anchored surrounding rock was constructed. The physical simulation test for the bearing capacity of the model was performed with three schemes. Finally, the strengthening mechanism of varying anchoring methods was validated. The research findings in this paper may provide theoretical guidelines for the design and construction of bolting support in tunnels.

A numerical study on the safety of tunnel face using face bolting method (페이스 볼트 공법을 이용한 터널 막장 안정성에 관한 수치해석적 연구)

  • Ra, Jee-Hyun;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • As tunnel excavation generats stress release, a stability security of tunnel face is mainly important in case of tunnel excavation in the weak grounds. Using the steel bar or glass fiber pipe which had regular hardness, a face bolt method to reinforce previously is applied to an excavation object tunnel face aspect among measures methods regarding this. Therefore, used $FLAC^{3D}$ Ver. 2.1 on 5 Case of 0.5D (2EA), 1.0D, 1.5D, 2.0D with the length and 6 Case of 0, 20, 40, 60, 80, 100EA with the number of the bolt that a face bolt method was installed at these papers in the necessary weak grounds in order to review applicability of the tunnel face reinforcement method that used these face bolts, and executed three dimension continuous analysis.

  • PDF

Elasto-Plastic Behavior of Steel Beams with High Strength Bolted Splices (고력볼트 접합이음 철골보의 탄소성거동)

  • Choi, Sung Mo;Kim, Jin Ho;Roh, Won Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.531-539
    • /
    • 2003
  • Unlike field-welded moment frames damaged during the Northridge earthquake, a column-tree moment frame has a tool to control and reduce its seismic behavior. The tool is the girder splice. Girder splices could be designed to be sufficiently ductile and to have a prescribed bending moment capacity. In such a design, during earthquakes, the girder splices would act as ductile "fuses" and limit the magnitude of forces including the bending moment that could be developed in the frame. In Korea, most moment frames arc composed of a column-tree moment frame. Therefore, the elasto-plastic behavior of steel beams with high strength bolted friction splice should be clarified. Furthermore, structural capacities, including energy absorption capacity, must be quantitatively found. This paper discusses an experimental study to clarify elasto-plastic behavior of steel beams with high strength bolted friction splices. A total of 5 specimens were tested. A specimen was fabricated to have a beam splice designed by a full strength method. Other specimens were fabricated to have beam splices with 75%, 50% and 0% capacities compared with the specimen.

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

The Assessment for Coupling Integrity of Pressurizer Support Bolting (가압기 지지대 볼트 연결부의 건전성 평가에 관한 연구)

  • Cho, Nam-Jin;Kim, Woo-Chang;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.26-31
    • /
    • 2013
  • In nuclear power plant, anchor bolts for pressurizer supports are sufficiently used in terms of safety reason, but field inspections have reported that some bolts exceed the limit of their allowable hardness. Because the high level of hardness may lead to failures due to the stress corrosion or fracture toughness, a regular inspection is required for the bolts in nuclear power plant. Thus, this research measures the hardness of bolts currently used in pressurizer supports and then estimates maximum allowable stresses preventing failures by stress corrosion and fracture toughness. Using the ANSYS program, the stresses of the bolts in the regular condition and accidental condition have been calculated, and the possible maximum stress has been compared with the estimated allowable stresses. From the results, the stresses of bolts in the accidental condition satisfy the allowable safety stress from the stress corrosion failure. However, in the future, it shall be needed to consider the reflection of the structure assembling method on the assembling procedure to ensure the pressurizer integrity during maintenance period time.

A Study on the Behavior of Metal Touch Connection subject to Connection Types (이음방식 및 틈의 위치에 따른 메탈터치 이음부의 거동에 관한 연구)

  • Hong, Kap Pyo;Kim, Seok Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.661-669
    • /
    • 2004
  • In the steel structure of high-rise buildings, a connection analysisand a column design have been made after welding and bolting suitable gaps. Each country, however, has different codes, and such differences are very big. American steel has been designed according to a code that all axial loads can be carried from the upper parts to the lower parts as determined by the designer, but Korean and Japanese steel have been designed by 1/4 of the standard of all axial loads. In this paper, a metal touch experiment was done as an intermediation parameter with a connecting location and a connecting method for economic and constructive efficiency. Every specimen is tested by a low-to-high displacement control to grasp ultimate strength, displacement, the connection's lateral deflection, and stress. The results of the test were compared and analyzed.

Influence of Load on Welding Stress Distribution of Structural Steel (구조용 강재의 용접응력 분포에 미치는 작용력의 영향)

  • Lee, Sang Hyong;Chang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.555-564
    • /
    • 2004
  • Steel materials, which are normally used in bridge structures, are prone to corrosion and have thin plate structures. Steel bridges that have been damaged through increased vehicle load and corrosion are frequently expected to be strengthened. Repair or strengthening methods generally include cutting, bolting, and welding. The basic characteristics of stress and deformation behavior generated by cutting and welding in the course of the repair work, however, are not yet understood. It is difficult to say whether the safety of the structure after welding conforms with existing safety evaluation methods.Therefore, to gain confidence in the material and to guarantee the safety of the structure after welding, the stress generated by heat, through welding and cutting, was generalized. The effect of additional loads with respect to stress generated by heat was also investigated.