• Title/Summary/Keyword: bolt hole

Search Result 81, Processing Time 0.028 seconds

A NOVEL APPROACH OF BUILDING CONSTRUCTION USING ROBOTIC TECHNOLOGY

  • Baeksuk Chu;Kyungmo Jung;Hunhee Cho;Myo-Taeg Lim;Daehie Hong
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.31-37
    • /
    • 2011
  • Construction automation is yet to be improved since construction site still faces a lot of high risks and difficulties. This research focuses on applying robotic beam assembly system in place of construction workers. This system consists of CF (Construction Factory) structure to provide adequate working environment to robot automation. The CF structure not only gives automation environment for a robot but also houses the equipments to protect from outside effects. The robotic beam assembly system also consists of robotic bolting system and robot transport mechanism. It utilizes various tools to insert and join the bolts and nuts. Visual servoing helps precise robot motion by sensing bolt hole and tail of the bolt. ITA system helps non skilled workers to easily perform the assembly work with the robot system. The robot transport mechanism includes sliding rail and cross-wired lift. It carries the robot to a desired position for assembly work.

  • PDF

Study on the Development of the Displacement and Strain Distribution Measurement Algorithm to the Open Hole Tension Test by Using the Digital Image Correlation (이미지 상관법을 이용한 원공 인장 시편 변위 및 변형율 측정을 위한 알고리즘 개발에 관한 연구)

  • Choi, In Young;Kang, Young June;Hong, Kyung Min;Lee, Hak Seong;Kim, Seong Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • The mechanical jointing method is very important in the machine parts and structure. They are used by the bolts and rivet because it is very convenient to replace the parts and the structure. However, the mechanical jointing methods using the bolt and rivet needed the open hole. The machine parts life cycle is reduced because this open hole created the stress concentration. Therefore, the measurement methods are needed to evaluate phenomenon of the stress concentration. This paper discusses the development of the measurement algorithm using the digital image correlation methods to measure the strain distribution of the open hole. To implement the measurement algorithm using the DIC, the LabVIEW 2010 programming tool was used. To measure the strain distribution of the open hole, the tensile specimens having an open hole are made by using the aluminum 6061-T6. To secure the reliability of measurement result using the DIC, the DIC measurement results and FEM analysis results were compared.

Unsteady heat transfer and thermal stress analysis of a gasoline engine cylinder head (실린더 헤드의 비정상 열전달 및 열응력 해석)

  • 박진무;임영훈;김병탁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • In this study are determined the unsteady temperature and thermal stress fields for a domestic 4-cylinder, 4-cycle gasoline engine cylinder head by the three-dimensional finite element method. A representative part of the cylinder head is modelled as a combination of hexahedron isoparametric elements, and the time-dependent temperature and the heat transfer coefficient of the gas are imposed as the thermal boundary conditions for the engine speeds of 500 rpm and 2000 rpm. The obtained results, which are represented graphically, indicate that the amplitudes of temperature fluctuation during a cycle are about 10.deg. C and 3.deg. C respectively on the surface of combustion chamber, and the maximum temperature fields occur at 30.deg. , 10.deg. respectively before the initiation of the exhaust stroke. Thermal stress fields due to non-uniform temperature distributions show that compressive stress is much larger than tensile stress throughout a cycle. It is also found that the compressive stress varies with substantial amplitude between the exhaust port and ignition plug hole, and the high tensile stress with small fluctuation occurs between exhaust port and the adjacent head bolt hole.

  • PDF

Effect of Ultrasonic Vibration on Micro-EDM Channel (Micro-EDM 채널가공에서 초음파 가진의 영향)

  • Lim, Heesung;Hong, Minsung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.421-425
    • /
    • 2016
  • Micro-EDM is one of the recent fine-machining technologies. Micro-EDM is widely used in precision processes because products manufactured via EDM are free from workpiece hardness. However, the debris produced during the process cause many problems such as reduced precision of the process. The first solution of this problem involves using the milling hole process. Micro-EDM hole process involves an electrode moving rapidly in the vertical direction via a servo system to disperse debris. However, this process can cause reduced work efficiency owing to contact between the electrode and workpiece. In this study, ultrasonic vibration is added to micro-EDM channel machining. Ultrasonic vibration removes the debris during machining and enables precision machining. Consequently, a clean work environment for the subsequent processes is maintained.

Prediction of Fatigue Life for Hole-notched Weave CFRP Plate (평직 CFRP 홀 노치재의 피로 수명 예측)

  • Kim, Sang-Young;Kim, Yong-Seok;Kwon, Hee-Whan;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • Recently, CFRP composite is more and more used in the various fields because of a higher specific modulus, chemical property and so on. Most products using CFRP composite are manufactured by construction of components. Various components are joined with those by bolts and pins. Holes for bolts and pins decrease strength and fatigue life of components, because those act as notch in structures. In this paper, we experimentally evaluated the fatigue life of hole-notched and unnotched weave CFRP plate. Then, we compared the two results and proposed an equation for prediction of fatigue life.

Shearing Strength Properties of Bolted, Drift-Pinned Joints of the Larix Glulam - Effects of Fastener Diameter, Slenderness and End-distance on Strength Properties - (낙엽송 집성재의 Bolt, Drift Pin 접합부의 전단강도 성능 평가 - 접합구 직경, 세장비, 끝면거리가 강도에 미치는 영향 -)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.69-78
    • /
    • 2008
  • Shearing strength test in tension type was investigated to determine the shear resistance of bolt and drift-pin connection of domestic larix glulam. The specimen was connected with bolt and drift-pin in the inserted plate type, and only bolt in the side plate type. The diameter of bolt and drift-pin used in the experiment are 12, 16 and 20 mm. The hole of bolt was drilled at the end-distance 5 d and 7 d. Tension load was loaded in the direction parallel to grain. The shear resistance was evaluated according to end-distance through this, the yield load was compared with the experimental yield load, using Larsen's formula. The prototype design strength is based on the yield load of end-distance 7 d and the reduction factor of end-distance 5 d was calculated. The results were as follows. 1. The average of maximum load of drift-pin connection was higher by 3~30% at the inserted type than at bolt connection with increasing diameter. In bolt connection, the average of maximum load of the side type was 1.54~2.07 times higher than that of the inserted type. In the same diameter, the average of maximum load of end-distance 7 d was higher by 8~44% than that of 5 d. 2. The bearing stress was 1.16~1.41 times higher at the inserted connection than at drift-pin connection, and 1.37~1.86 times higher at 7 d than at 5 d. Also, when the slenderness ratio was below 7.5 at drift-pin connection and below 6.0 at inserted connection, the lateral capacity was good. 3. The ratio of the experimental yield load and the predicted yield load calculated by Larsen's formula proposed by Larsen was 0.80~1.10 at inserted connection, and 0.75~1.46 at side connection. 4. When the inserted bolt connection was based on the yield load of end-distance 7 d, the reduction factor was 0.89 at 12 mm connection, 0.93 at 16 mm and 0.85 at 20 mm. The reduction factor was 0.89 at 12 mm the inserted drift-pin connection, 0.93 at 16 mm, 0.93 at 20 mm. The reduction factor was 0.79 at the side connection of the 12 mm bolt connection and 0.80 at 16 mm.

A study on Tensile performance of Energy Absorbing Bolts in Space Frame (스페이스프레임에 사용되는 에너지 흡수형 볼트의 인장성능연구)

  • Lee, Sung-Min;Kim, Min-Sook;Choi, Jung-Sam;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

An Experimental study on Failure Mode of Space Frame's Ball joint connection (스페이스프레임의 볼조인트 접합부 파괴모드에 관한 실험적 연구)

  • Lee, Sung-Min;Kim, Min-Sook;Kim, Dae-Young;Song, Chang-Young;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.61-68
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

An Experimental Study on the Bolted Connection Fatigue Capacity of Corrugated Steel Plates (파형강판 볼트 이음부의 피로성능에 관한 실험적 연구)

  • Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2014
  • Corrugated steel plate structure, which is built by assembling corrugated steel plate segments with bolts on site and filling the surroundings with quality soil, is widely used for buried structures as a eco-corridors, small bridges, and closed conduits. This experimental study is dealt with the static and fatigue performance of bolt connected corrugated steel plates under flexural loading. The experimental variables to verify the fatigue performance are bolt diameters and detailing of connection such as washer and the corrugation dimension of specimens has a $400{\times}150$ mm. The experimental ultimate strength of specimens under static loading was higher than the theoretical strength and all specimen failed by a bearing and tearing failure of bolt hole of upper plate. Therefore, a fatigue tests of specimens had 6.0mm and 7.0mm thickness was conducted in which the load range was up to 209kN and 516kN, respectively. From the fatigue test, failure patterns are changed from plate bearing and tearing which is a typical failure pattern of static failure to a bearing failure of plate and shear failure of bolt, and experimental fatigue limit at $2{\times}10^6$cycles is about 85MPa.

A Case of Osteotomy of the Distal Radius and Ulna with Panarthrodesis of Carpus for Reform of (성장판 조기페쇄에 따른 요척골 외전과 완관절 아탈구 교정들 위한 요척골 절단술 및 광범위 완관절 고술의 일례)

  • 이종일;김남수;최인혁
    • Journal of Veterinary Clinics
    • /
    • v.17 no.2
    • /
    • pp.485-489
    • /
    • 2000
  • A 23.5 kg179, 8 months olds non-spaycd female Rottweiler dog was submitted to the veterinary teaching animal hospitals Chonbuk: national university, for chronic bitten trauma on right foreleg with pain, lameness, and pronation. The patient fought with a neighboring dog about five months ago and had mild anorexia, depression, bolt normal walking at that time. CBC and blood chemical examination were in normal range. Physical examination resulted in the right foreleg with edema and interval rotation of carpal joint. Radiograph of the right carpus showed varus and subluxation. We finally diagnosed the patient as the growth deformity of distal radius and ulna caused by medial premature closure of distal radial physis. Osteotomy was performed fur reforming of the varus of the distal radius and ulna with 6-hole straight plate and six 3.5 mm screws. Panarthrodcsis of carpus was preformed for correcting subluxation using 6-hole T-shaped plate and four 3.5 mm screws with cortical onlay autograft and strengthened by two 3.5 mm screws and tension wire band in lateral aspect of the carpus. Follow-up radiographs after 16 weeds of the surgery showed complete coaptation of osteotomy sire of the radius and uIna. After 6 months of the procedurc, talc plate, screws and the wire were removed except 7-shaped plate and four screws fur arthrodesis. The patient was seen in normal forelimb and could walk and run without lameness after 7 months of the procedure.

  • PDF