• Title/Summary/Keyword: bolt failure

Search Result 202, Processing Time 0.029 seconds

Statistical Life Prediction on IASCC of Stainless Steel for PWR Core Internals (가압형 경수로 스테인리스강 내부 구조물의 조사유기 응력부식균열에 대한 통계적 수명 예측)

  • Kim, Sung-Woo;Hwang, Seong-Sik;Lee, Yeon-Ju
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.583-589
    • /
    • 2012
  • This work is concerned with a statistical approach to the life prediction on irradiation-assisted stress corrosion cracking (IASCC) of stainless steel (SS) for core internals of a pressurized water reactor (PWR). The previous results of the time-to-failure of IASCC measured on neutron-irradiated stainless steel components were statistically analyzed in terms of stress and irradiation. The accelerating life testing model of IASCC of cold worked Type 316 SS was established based on an inverse power model with two stress-variables, the applied stress and irradiation dose. Considering the variation of the yield strength and applied stress with the irradiation dose in the model, the remaining life of the baffle former bolt was statistically predicted during operation under complex environments of stress and irradiation.

Failure Evaluation Plan of a Reactor Internal Components of a Decommissioned Plant

  • Hwang, Seong Sik;Kim, Sung Woo;Choi, Min Jae;Cho, Sung Hwan;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.189-195
    • /
    • 2021
  • A technology for designing and licensing a dedicated radiation shielding facility needs to be developed for safe and efficient operation an R&D center. Technology development is important for smooth operation of such facilities. Causes of damage to internal structures (such as baffle former bolt (BFB) of pressurized water reactor) of a nuclear power reactor should be analyzed along with prevention and countermeasures for similar cases of other plants. It is important to develop technologies that can comprehensively analyze various characteristics of internal structures of long term operated reactors. In high-temperature, high-pressure operating environment of nuclear power plants, cases of BFB cracks caused by irradiated assisted stress corrosion cracks (IASCC) have been reported overseas. The integrity of a reactor's internal structure has emerged as an important issue. Identifying the cause of the defect is requested by the Korean regulatory agency. It is also important to secure a foundation for testing technology to demonstrate the operating environment for medium-level irradiated testing materials. The demonstration testing facility can be used for research on material utilization of the plant, which might have highest fluence on the internal structure of a reactor globally.

Seismic Behavior Investigation on Blind Bolted CFST Frames with Precast SCWPs

  • Wang, Jingfeng;Shen, Qihan;Li, Beibei
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1666-1683
    • /
    • 2018
  • To explore seismic behavior of blind bolted concrete-filled steel tube (CFST) frames infilled with precast sandwich composite wall panels (SCWPs), a series tests of blind bolted square CFST frames with precast SCWPs under lateral low-cyclic loading were conducted. The influence of the type of wall concrete, wall-to-frame connection and steel brace setting, etc. on the hysteretic curves and failure modes of the type of composite structure was investigated. The seismic behavior of the blind bolted CFST frames with precast SCWPs was evaluated in terms of lateral load-displacement relation curves, strength and stiffness degradation, crack patterns of SCWPs, energy dissipation capacity and ductility. Then, a finite element (FE) analysis modeling using ABAQUS software was developed in considering the nonlinear material properties and complex components interaction. Comparison indicated that the FE analytical results coincided well with the test results. Both the experimental and numerical results indicated that setting the external precast SCWPs could heighten the load carrying capacities and rigidities of the blind bolted CFST frames by using reasonable connectors between frame and SCWPs. These experimental studies and FE analysis would enable improvement in the practical design of the SCWPs in fabricated CFST structure buildings.

Statistical Evaluation of Factors Affecting IASCC of Austenitic Stainless Steels for PWR Core Internals (오스테나이트계 스테인리스강 노내 구조물의 조사유기응력부식균열 영향 인자에 대한 통계적 분석)

  • Kim, Sung-Woo;Hwang, Seong-Sik;Kim, Hong-Pyo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.819-827
    • /
    • 2009
  • This work is concerned with a statistical analysis of factors affecting the irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internals of pressurized water reactors (PWR). The microstructural and environmental factors were reviewed and critically evaluated by the statistical analysis. The Cr depletion at grain boundary was determined to have no significant correlation with the IASCC susceptibility. The threshold irradiation fluence of IASCC in a PWR was statistically calculated to decrease from 5.799 to 1.914 DPA with increase of temperature from 320 to $340^{\circ}C$. From the analysis of the relationship between applied stress and time-to-failure of stainless steel components based on an accelerated life testing model, it was found that B2 life of a baffle former bolt exposed to neutron fluence of 20 and 75 DPA was at least 2.5 and 0.4 year, respectively, within 95% confidence interval.

Shear lag coefficient of angles with bolted connections including equal and different legs through finite element method

  • Shahbazi, Lida;Rahimi, Sepideh;Hoseinzadeh, Mohamad;Rezaieaan, Ramzan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.493-502
    • /
    • 2022
  • Shear lag phenomenon has long been considered in numerous structural codes; however, the AISC provisions have now no longer proposed any unique equation to calculate the shear lag ratio in bolted connections for angles in general. It is noticeable that, however, codes used in this case are largely conservative and need to be amended. A parametric study consisting of 27 angle sections with equal legs and different with bolted connections was performed to investigate the effects of shear lag on the ultimate tensile capacity of angle members. The main parameters were: steel grade, connection length and eccentricity from the center of the plate, as well as the number of rows of bolts parallel to the applied force. The test results were compared with the predictions of the classical 1-x/l law proposed by Mons and Chesen to investigate its application to quantify the effect of shear lag. A parametric study was performed using valid FE models that cover a wide range of parameters. Finally, based on the numerical results, design considerations were proposed to quantify the effect of shear lag on the ultimate tensile capacity of the tensile members.

Understanding the Mismatch between ERP and Organizational Information Needs and Its Responses: A Study based on Organizational Memory Theory (조직의 정보 니즈와 ERP 기능과의 불일치 및 그 대응책에 대한 이해: 조직 메모리 이론을 바탕으로)

  • Jeong, Seung-Ryul;Bae, Uk-Ho
    • Asia pacific journal of information systems
    • /
    • v.22 no.2
    • /
    • pp.21-38
    • /
    • 2012
  • Until recently, successful implementation of ERP systems has been a popular topic among ERP researchers, who have attempted to identify its various contributing factors. None of these efforts, however, explicitly recognize the need to identify disparities that can exist between organizational information requirements and ERP systems. Since ERP systems are in fact "packages" -that is, software programs developed by independent software vendors for sale to organizations that use them-they are designed to meet the general needs of numerous organizations, rather than the unique needs of a particular organization, as is the case with custom-developed software. By adopting standard packages, organizations can substantially reduce many of the potential implementation risks commonly associated with custom-developed software. However, it is also true that the nature of the package itself could be a risk factor as the features and functions of the ERP systems may not completely comply with a particular organization's informational requirements. In this study, based on the organizational memory mismatch perspective that was derived from organizational memory theory and cognitive dissonance theory, we define the nature of disparities, which we call "mismatches," and propose that the mismatch between organizational information requirements and ERP systems is one of the primary determinants in the successful implementation of ERP systems. Furthermore, we suggest that customization efforts as a coping strategy for mismatches can play a significant role in increasing the possibilities of success. In order to examine the contention we propose in this study, we employed a survey-based field study of ERP project team members, resulting in a total of 77 responses. The results of this study show that, as anticipated from the organizational memory mismatch perspective, the mismatch between organizational information requirements and ERP systems makes a significantly negative impact on the implementation success of ERP systems. This finding confirms our hypothesis that the more mismatch there is, the more difficult successful ERP implementation is, and thus requires more attention to be drawn to mismatch as a major failure source in ERP implementation. This study also found that as a coping strategy on mismatch, the effects of customization are significant. In other words, utilizing the appropriate customization method could lead to the implementation success of ERP systems. This is somewhat interesting because it runs counter to the argument of some literature and ERP vendors that minimized customization (or even the lack thereof) is required for successful ERP implementation. In many ERP projects, there is a tendency among ERP developers to adopt default ERP functions without any customization, adhering to the slogan of "the introduction of best practices." However, this study asserts that we cannot expect successful implementation if we don't attempt to customize ERP systems when mismatches exist. For a more detailed analysis, we identified three types of mismatches-Non-ERP, Non-Procedure, and Hybrid. Among these, only Non-ERP mismatches (a situation in which ERP systems cannot support the existing information needs that are currently fulfilled) were found to have a direct influence on the implementation of ERP systems. Neither Non-Procedure nor Hybrid mismatches were found to have significant impact in the ERP context. These findings provide meaningful insights since they could serve as the basis for discussing how the ERP implementation process should be defined and what activities should be included in the implementation process. They show that ERP developers may not want to include organizational (or business processes) changes in the implementation process, suggesting that doing so could lead to failed implementation. And in fact, this suggestion eventually turned out to be true when we found that the application of process customization led to higher possibilities of failure. From these discussions, we are convinced that Non-ERP is the only type of mismatch we need to focus on during the implementation process, implying that organizational changes must be made before, rather than during, the implementation process. Finally, this study found that among the various customization approaches, bolt-on development methods in particular seemed to have significantly positive effects. Interestingly again, this finding is not in the same line of thought as that of the vendors in the ERP industry. The vendors' recommendations are to apply as many best practices as possible, thereby resulting in the minimization of customization and utilization of bolt-on development methods. They particularly advise against changing the source code and rather recommend employing, when necessary, the method of programming additional software code using the computer language of the vendor. As previously stated, however, our study found active customization, especially bolt-on development methods, to have positive effects on ERP, and found source code changes in particular to have the most significant effects. Moreover, our study found programming additional software to be ineffective, suggesting there is much difference between ERP developers and vendors in viewpoints and strategies toward ERP customization. In summary, mismatches are inherent in the ERP implementation context and play an important role in determining its success. Considering the significance of mismatches, this study proposes a new model for successful ERP implementation, developed from the organizational memory mismatch perspective, and provides many insights by empirically confirming the model's usefulness.

  • PDF

Analytical Study of Net Section Fracture in Special Concentrically Braced Frames (중심가새골조의 순단면 파단에 관한 해석적 연구)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Failure modes result in fracture or tearing, which may cause deterioration of resistance and reduction of inelastic deformation capacity. The potential failure modes for Special Concentrically Braced Frames (SCBFs) include fracture or tearing of the brace, net section fracture of the brace or gusset plate, fracture of the gusset plate welds, shear fracture of the bolts, block shear, excessive bolt bearing deformation, and buckling of the gusset plate. HSS tubular braces are commonly used in SCBFs, and net section fracture of the tubular brace may also occur through the brace net section at the end of the slot cut into the tube to slip over the gusset plate. This failure mode is categorized as a tension failure mode, and may cause dramatic loss of resistance and brittle behavior. Net section reinforcement is required according to AISC design specifications (AISC 2001). In this paper, the need to reinforce the net section area was discussed. Initially, the results of the net section fracture tests done by the University of California in Berkeley were presented with the modeling of these tests using FE models. To investigate the possibility of net section fracture in an actual frame, the slot end hole model was adapted to the frame FE model, and alternate near-fault histories were applied with tension-dominated cycles, since previous analyses showed that loading history was the most critical factor in net section fracture. The need for this reinforcement (cover plate) and the tension-dominated near-fault history were investigated.

Effect of Chemical Composition of Nut Material on the Fracture Behavior in Nut Projection Welding of Hot-Stamped Steel Sheet (핫스탬핑강의 너트 프로젝션 용접시 너트 재질이 용접부 파단모드 변화에 미치는 영향)

  • Lim, Sung-Sang;Kim, Young-Tae;Chun, Eun-Joon;Nam, Ki-Sung;Park, Young-Wan;Kim, Jae-Wan;Lee, Sun-Young;Choi, Il-dong;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The use of materials for modern lightweight auto-bodies is becoming more complex than hitherto assemblies. The high strength materials nowadays frequently used for more specific fields such as the front and rear sub frames, seat belts and seats are mounted to the assembled body structure using bolt joints. It is desirable to use nuts attached to the assembled sheets by projection welding to decrease the number of loose parts which improves the quality. In this study, nut projection welding was carried out between a nut of both boron steel and carbon steel and ultra-high strength hot-stamped steel sheets. Then, the joints were characterized by optical and scanning electron microscope. The mechanical properties of the joints were evaluated by microhardness measurements and pullout tests. An indigenously designed sample fixture set-up was used for the pull-out tests to induce a tensile load in the weld. The fractography analysis revealed the dominant interfacial fracture between boron steel nut weld which is related to the shrinkage cavity and small size fusion zone. A non-interfacial fracture was observed in carbon steel nut weld, the lower hardness of HAZ caused the initiation of failure and allowed the pull-out failure which have higher in tensile strengths and superior weldability. Hence, the fracture load and failure mode characteristics can be considered as an indication of the weldability of materials in nut projection welding.

Structural Performance of the Cast-in-place Anchor in Cracked Concrete used in Power Plant Facilities (균열 콘크리트에 매립된 발전설비 현장설치용 선 설치 앵커의 구조성능 평가)

  • Kim, Dong-Ik;Jung, Woo-young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.120-128
    • /
    • 2019
  • It is very important to verify the seismic performance and stability of the power plant fixture in the domestic power plant, because earthquakes have increased in frequency around the world which resulted in the frequent occurrence of power plant damage caused by the failure of electric power facilities. In this study, through the on-site inspection of power plant fixation unit installed in domestic power plants, we carried out structural performance evaluation of the fixation unit anchor bolts installed on the concrete slabs. The field survey showed M12 J hook anchor bolts were used. Anchor bolt pullout and shear performance evaluation were performed based on ASTM E 488-96 standard. Moreover, artificial crack with the width of 0.5 mm was applied during the experiment based on ATM355.4 and ETAG 001. The comparison of M12 J hook anchor bolt pullout and shear test result to design value required in domestic and international design standard, show a satisfactory result. M12 J hook anchor pullout and shear performance was found to be about 35% and 7%, respectively, higher than the required design value.

Performance Evaluation of Full Scale Reinforced Subgrade for Railroad with Rigid Wall Under Static Load (정하중 재하 시 실물 강성벽 일체형 철도보강노반의 성능평가)

  • Kim, Dae-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.31-42
    • /
    • 2015
  • The Reinforced subgrade for railroad (RSR) was constructed for one way railway line with the dimension of 5 m high, 6 m wide and 20 m long to evaluate its performance under train design load. The RSR has characteristics of short length (0.3-0.4 H) of reinforcement and rigid wall, 30 and 40 cm vertical spacing of reinforcement installation. To enhance economics and constructability, three kinds of connections (welding, hinge & bolt, bold wire) were also designed to realize the integration between rigid wall and reinforced subgrade. Two times of static loading tests were done on the full size railroad subgrade. The maximum applied pressure was 0.98 MPa (the maximum test load 5.88 MN), which corresponds to 19.6 times of the design load for railroad subgrade, 50 kPa. The performance on the RSR was evaluated with the safety on the failure, subgrade bearing capacity and settlement, horizontal displacement of wall, and reinforcement strain. Based on the full scale test, we confirmed that the RSR with the conditions of 0.35 H (35% of height) short reinforcement length, hinge & bolt type connection for integration between rigid wall and reinforced subgrade, and 40cm vertical spacing of reinforcement installment shows good performance under train design load.