• 제목/요약/키워드: bolt failure

검색결과 202건 처리시간 0.023초

가압형 경수로 스테인리스강 내부 구조물의 조사유기 응력부식균열에 대한 통계적 수명 예측 (Statistical Life Prediction on IASCC of Stainless Steel for PWR Core Internals)

  • 김성우;황성식;이연주
    • 대한금속재료학회지
    • /
    • 제50권8호
    • /
    • pp.583-589
    • /
    • 2012
  • This work is concerned with a statistical approach to the life prediction on irradiation-assisted stress corrosion cracking (IASCC) of stainless steel (SS) for core internals of a pressurized water reactor (PWR). The previous results of the time-to-failure of IASCC measured on neutron-irradiated stainless steel components were statistically analyzed in terms of stress and irradiation. The accelerating life testing model of IASCC of cold worked Type 316 SS was established based on an inverse power model with two stress-variables, the applied stress and irradiation dose. Considering the variation of the yield strength and applied stress with the irradiation dose in the model, the remaining life of the baffle former bolt was statistically predicted during operation under complex environments of stress and irradiation.

Failure Evaluation Plan of a Reactor Internal Components of a Decommissioned Plant

  • Hwang, Seong Sik;Kim, Sung Woo;Choi, Min Jae;Cho, Sung Hwan;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.189-195
    • /
    • 2021
  • A technology for designing and licensing a dedicated radiation shielding facility needs to be developed for safe and efficient operation an R&D center. Technology development is important for smooth operation of such facilities. Causes of damage to internal structures (such as baffle former bolt (BFB) of pressurized water reactor) of a nuclear power reactor should be analyzed along with prevention and countermeasures for similar cases of other plants. It is important to develop technologies that can comprehensively analyze various characteristics of internal structures of long term operated reactors. In high-temperature, high-pressure operating environment of nuclear power plants, cases of BFB cracks caused by irradiated assisted stress corrosion cracks (IASCC) have been reported overseas. The integrity of a reactor's internal structure has emerged as an important issue. Identifying the cause of the defect is requested by the Korean regulatory agency. It is also important to secure a foundation for testing technology to demonstrate the operating environment for medium-level irradiated testing materials. The demonstration testing facility can be used for research on material utilization of the plant, which might have highest fluence on the internal structure of a reactor globally.

Seismic Behavior Investigation on Blind Bolted CFST Frames with Precast SCWPs

  • Wang, Jingfeng;Shen, Qihan;Li, Beibei
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1666-1683
    • /
    • 2018
  • To explore seismic behavior of blind bolted concrete-filled steel tube (CFST) frames infilled with precast sandwich composite wall panels (SCWPs), a series tests of blind bolted square CFST frames with precast SCWPs under lateral low-cyclic loading were conducted. The influence of the type of wall concrete, wall-to-frame connection and steel brace setting, etc. on the hysteretic curves and failure modes of the type of composite structure was investigated. The seismic behavior of the blind bolted CFST frames with precast SCWPs was evaluated in terms of lateral load-displacement relation curves, strength and stiffness degradation, crack patterns of SCWPs, energy dissipation capacity and ductility. Then, a finite element (FE) analysis modeling using ABAQUS software was developed in considering the nonlinear material properties and complex components interaction. Comparison indicated that the FE analytical results coincided well with the test results. Both the experimental and numerical results indicated that setting the external precast SCWPs could heighten the load carrying capacities and rigidities of the blind bolted CFST frames by using reasonable connectors between frame and SCWPs. These experimental studies and FE analysis would enable improvement in the practical design of the SCWPs in fabricated CFST structure buildings.

오스테나이트계 스테인리스강 노내 구조물의 조사유기응력부식균열 영향 인자에 대한 통계적 분석 (Statistical Evaluation of Factors Affecting IASCC of Austenitic Stainless Steels for PWR Core Internals)

  • 김성우;황성식;김홍표
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.819-827
    • /
    • 2009
  • This work is concerned with a statistical analysis of factors affecting the irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internals of pressurized water reactors (PWR). The microstructural and environmental factors were reviewed and critically evaluated by the statistical analysis. The Cr depletion at grain boundary was determined to have no significant correlation with the IASCC susceptibility. The threshold irradiation fluence of IASCC in a PWR was statistically calculated to decrease from 5.799 to 1.914 DPA with increase of temperature from 320 to $340^{\circ}C$. From the analysis of the relationship between applied stress and time-to-failure of stainless steel components based on an accelerated life testing model, it was found that B2 life of a baffle former bolt exposed to neutron fluence of 20 and 75 DPA was at least 2.5 and 0.4 year, respectively, within 95% confidence interval.

Shear lag coefficient of angles with bolted connections including equal and different legs through finite element method

  • Shahbazi, Lida;Rahimi, Sepideh;Hoseinzadeh, Mohamad;Rezaieaan, Ramzan
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.493-502
    • /
    • 2022
  • Shear lag phenomenon has long been considered in numerous structural codes; however, the AISC provisions have now no longer proposed any unique equation to calculate the shear lag ratio in bolted connections for angles in general. It is noticeable that, however, codes used in this case are largely conservative and need to be amended. A parametric study consisting of 27 angle sections with equal legs and different with bolted connections was performed to investigate the effects of shear lag on the ultimate tensile capacity of angle members. The main parameters were: steel grade, connection length and eccentricity from the center of the plate, as well as the number of rows of bolts parallel to the applied force. The test results were compared with the predictions of the classical 1-x/l law proposed by Mons and Chesen to investigate its application to quantify the effect of shear lag. A parametric study was performed using valid FE models that cover a wide range of parameters. Finally, based on the numerical results, design considerations were proposed to quantify the effect of shear lag on the ultimate tensile capacity of the tensile members.

조직의 정보 니즈와 ERP 기능과의 불일치 및 그 대응책에 대한 이해: 조직 메모리 이론을 바탕으로 (Understanding the Mismatch between ERP and Organizational Information Needs and Its Responses: A Study based on Organizational Memory Theory)

  • 정승렬;배억호
    • Asia pacific journal of information systems
    • /
    • 제22권2호
    • /
    • pp.21-38
    • /
    • 2012
  • Until recently, successful implementation of ERP systems has been a popular topic among ERP researchers, who have attempted to identify its various contributing factors. None of these efforts, however, explicitly recognize the need to identify disparities that can exist between organizational information requirements and ERP systems. Since ERP systems are in fact "packages" -that is, software programs developed by independent software vendors for sale to organizations that use them-they are designed to meet the general needs of numerous organizations, rather than the unique needs of a particular organization, as is the case with custom-developed software. By adopting standard packages, organizations can substantially reduce many of the potential implementation risks commonly associated with custom-developed software. However, it is also true that the nature of the package itself could be a risk factor as the features and functions of the ERP systems may not completely comply with a particular organization's informational requirements. In this study, based on the organizational memory mismatch perspective that was derived from organizational memory theory and cognitive dissonance theory, we define the nature of disparities, which we call "mismatches," and propose that the mismatch between organizational information requirements and ERP systems is one of the primary determinants in the successful implementation of ERP systems. Furthermore, we suggest that customization efforts as a coping strategy for mismatches can play a significant role in increasing the possibilities of success. In order to examine the contention we propose in this study, we employed a survey-based field study of ERP project team members, resulting in a total of 77 responses. The results of this study show that, as anticipated from the organizational memory mismatch perspective, the mismatch between organizational information requirements and ERP systems makes a significantly negative impact on the implementation success of ERP systems. This finding confirms our hypothesis that the more mismatch there is, the more difficult successful ERP implementation is, and thus requires more attention to be drawn to mismatch as a major failure source in ERP implementation. This study also found that as a coping strategy on mismatch, the effects of customization are significant. In other words, utilizing the appropriate customization method could lead to the implementation success of ERP systems. This is somewhat interesting because it runs counter to the argument of some literature and ERP vendors that minimized customization (or even the lack thereof) is required for successful ERP implementation. In many ERP projects, there is a tendency among ERP developers to adopt default ERP functions without any customization, adhering to the slogan of "the introduction of best practices." However, this study asserts that we cannot expect successful implementation if we don't attempt to customize ERP systems when mismatches exist. For a more detailed analysis, we identified three types of mismatches-Non-ERP, Non-Procedure, and Hybrid. Among these, only Non-ERP mismatches (a situation in which ERP systems cannot support the existing information needs that are currently fulfilled) were found to have a direct influence on the implementation of ERP systems. Neither Non-Procedure nor Hybrid mismatches were found to have significant impact in the ERP context. These findings provide meaningful insights since they could serve as the basis for discussing how the ERP implementation process should be defined and what activities should be included in the implementation process. They show that ERP developers may not want to include organizational (or business processes) changes in the implementation process, suggesting that doing so could lead to failed implementation. And in fact, this suggestion eventually turned out to be true when we found that the application of process customization led to higher possibilities of failure. From these discussions, we are convinced that Non-ERP is the only type of mismatch we need to focus on during the implementation process, implying that organizational changes must be made before, rather than during, the implementation process. Finally, this study found that among the various customization approaches, bolt-on development methods in particular seemed to have significantly positive effects. Interestingly again, this finding is not in the same line of thought as that of the vendors in the ERP industry. The vendors' recommendations are to apply as many best practices as possible, thereby resulting in the minimization of customization and utilization of bolt-on development methods. They particularly advise against changing the source code and rather recommend employing, when necessary, the method of programming additional software code using the computer language of the vendor. As previously stated, however, our study found active customization, especially bolt-on development methods, to have positive effects on ERP, and found source code changes in particular to have the most significant effects. Moreover, our study found programming additional software to be ineffective, suggesting there is much difference between ERP developers and vendors in viewpoints and strategies toward ERP customization. In summary, mismatches are inherent in the ERP implementation context and play an important role in determining its success. Considering the significance of mismatches, this study proposes a new model for successful ERP implementation, developed from the organizational memory mismatch perspective, and provides many insights by empirically confirming the model's usefulness.

  • PDF

중심가새골조의 순단면 파단에 관한 해석적 연구 (Analytical Study of Net Section Fracture in Special Concentrically Braced Frames)

  • 유정한
    • 한국강구조학회 논문집
    • /
    • 제21권1호
    • /
    • pp.63-70
    • /
    • 2009
  • 파괴모드는 저항력과 비탄성 변형 능력의 저하를 일으키는 균열이나 파단으로 귀결된다. 특수중심가새골조의 잠재적 파괴모드는 가새의 균열이나 파단, 가새나 거싯 플레이트의 순단면 파단, 거싯 플레이트용접의 균열, 볼트의 전단균열, 블록전단파단, 그리고 거싯 플레이트의 좌굴 등을 포함하고 있다. HSS 튜브가새는 특수중심가새골조에 자주 사용되고, 가새의 순단면 파단은 거싯 플레이트가 가새로 삽입되는 홈의 끝부분에 가새의 순단면을 통해 발생한다. 이 파괴모드는 인장파괴모드로 분류되고 급격한 강도저하와 취성적인 거동을 보인다. AISC 디자인 규준에선 순단면 보강을 요구하고 있다 (AISC 2001). 이 논문에서, 순단면 보강의 필요성에 대해 논의한다. 먼저, 미국 버클리대학교에서 수행됐던 순단면 파단실험을 유한요소모델을 이용한 이 실험의 모델링을 통해 소개한다. 실제 골조에서의 순단면 파단의 가능성을 조사하기 위해, 홈이 있는 중심가새골조를 유한요소법을 이용 모델링 하고, 인장지배의 근거리지진 이력을 적용시킨다. 이는 이력이 순단면 파단의 가장 중요한 인자라는 이전 해석 결과에서 기인한 것이다. 순단면 보강의 필요성과 인장지배의 근거리지진 이력의 영향에 대해 조사한다.

핫스탬핑강의 너트 프로젝션 용접시 너트 재질이 용접부 파단모드 변화에 미치는 영향 (Effect of Chemical Composition of Nut Material on the Fracture Behavior in Nut Projection Welding of Hot-Stamped Steel Sheet)

  • 임성상;김영태;천은준;남기성;박영환;김재완;이선영;최일동;박영도
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.1-10
    • /
    • 2016
  • The use of materials for modern lightweight auto-bodies is becoming more complex than hitherto assemblies. The high strength materials nowadays frequently used for more specific fields such as the front and rear sub frames, seat belts and seats are mounted to the assembled body structure using bolt joints. It is desirable to use nuts attached to the assembled sheets by projection welding to decrease the number of loose parts which improves the quality. In this study, nut projection welding was carried out between a nut of both boron steel and carbon steel and ultra-high strength hot-stamped steel sheets. Then, the joints were characterized by optical and scanning electron microscope. The mechanical properties of the joints were evaluated by microhardness measurements and pullout tests. An indigenously designed sample fixture set-up was used for the pull-out tests to induce a tensile load in the weld. The fractography analysis revealed the dominant interfacial fracture between boron steel nut weld which is related to the shrinkage cavity and small size fusion zone. A non-interfacial fracture was observed in carbon steel nut weld, the lower hardness of HAZ caused the initiation of failure and allowed the pull-out failure which have higher in tensile strengths and superior weldability. Hence, the fracture load and failure mode characteristics can be considered as an indication of the weldability of materials in nut projection welding.

균열 콘크리트에 매립된 발전설비 현장설치용 선 설치 앵커의 구조성능 평가 (Structural Performance of the Cast-in-place Anchor in Cracked Concrete used in Power Plant Facilities)

  • 김동익;정우영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.120-128
    • /
    • 2019
  • 지진 발생 시 발전소 내 운용설비의 구조적, 기능적 손상이 발생됨에 따라 국내 발전소에 설치된 운용설비의 정착부에 설치된 앵커 볼트에 대한 구조성능 평가 및 안정성 검토는 매우 중요하다. 본 연구에서는 국내 발전소 내 설치된 발전설비들의 현장조사를 통하여 콘크리트 슬래브 균열 발생에 따른 정착부 앵커볼트의 구조성능평가를 수행하였다. 대상 구조물로는 대전광역시에 위치한 대청수력발전소를 모델로 고려하였으며 운용설비 정착부에 현장 설치된 앵커볼트는 M12 J형 선 설치 볼트로 조사, 선정하였다. 실험 시 고려된 시험기준은 미국 ACI355.4와 유럽기준 ETAG 001이며 내진성능 정적평가를 위한 균열 발생을 구현하기 위하여 스테인리스 강판을 이용하여 인위적인 균열을 발생시켰다. 최종적으로 균열 폭 0.5mm 발생에 따른 콘크리트 고정용 선설치 앵커에 대하여 ASTM E 488-96에 근거하여 인발 및 전단성능평가를 수행하였다. 실험 결과, M12 J형 선 설치 앵커볼트의 인발 및 전단성능의 경우, 국내 설계하중과 비교 시 모두 만족하는 결과를 확인하였다. 인발성능의 경우 설계 값 대비 약 35% 높은 것으로 확인되었으며 전단성능의 경우 설계 값보다 약 7% 높은 것으로 확인되었다.

정하중 재하 시 실물 강성벽 일체형 철도보강노반의 성능평가 (Performance Evaluation of Full Scale Reinforced Subgrade for Railroad with Rigid Wall Under Static Load)

  • 김대상
    • 한국지반신소재학회논문집
    • /
    • 제14권3호
    • /
    • pp.31-42
    • /
    • 2015
  • 강성벽 일체형 철도보강노반의 열차하중 하에서의 성능을 평가하기 위하여 실물 단선 철도 노반과 동일한 규모인 높이*폭*길이(5m*6m*20m)의 보강노반을 건설하였다. 철도보강노반은 높이의 30~40%의 짧은 보강재와 강성벽체, 보강재 연직배치간격 30와 40cm를 적용한 특징이 있다. 경제성 및 시공성 향상을 위하여 강성벽체와 보강토체와의 일체화 연결방식을 3종류(용접형, 힌지볼트형, 굵은 철사형)로 다르게 설계하였다. 철도 설계하중 50kPa의 19.6배에 해당되는 0.98MPa (최대시험하중 5.88MN) 최대하중에 대하여 2회 정하중 재하시험을 실시하였다. 철도보강노반의 성능은 파괴에 대한 안정성, 지지력과 침하, 벽체 발생 수평변위, 보강재 발생 변형률에 대한 검토로부터 평가하였다. 실물 실대형 시험결과로부터 높이의 35% 수준의 짧은 보강재와 힌지 볼트형 연결방식을 채택한 강성벽체 일체형 철도보강노반에서 40cm의 보강재 연직간격을 적용하여도 열차 설계하중 하에서 좋은 성능을 보이는 것을 확인할 수 있었다.