• Title/Summary/Keyword: boiling temperature

Search Result 696, Processing Time 0.023 seconds

Study on Film-Boiling Heat Transfer of Subcooled Turbulent Liquid Film Flow on Horizontal Plate (수평 과냉 . 난류액막류의 막비등 열전달에 관한 연구)

  • 김영찬;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.835-842
    • /
    • 2000
  • Film boiling heat transfer of the subcooled turbulent liquid film flow on a horizontal plate was investigated by theoretical and experimental studies. In the theoretical analysis, by solving the integral energy and momentum equations analytically, some generalized expressions for Nusselt number was deduced. Next, by comparing the deduced equations with the experimental data on the turbulent film boiling heat transfer of the subcooled thin liquid film flow, the semi-empirical relation between the Nusselt number based on the modified heat transfer coefficient and the Reynolds number was obtained. The correlating equation was very similar to that of the turbulent heat transfer in a single phase flow, and it was found that the heat transfer was dissipated to increase the liquid temperature.

  • PDF

Enhancement of the Critical Heat Flux by Using Heat Spreader

  • Yoon, Young-Sik;Hyup Yang;Kwak, Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1063-1072
    • /
    • 2003
  • Direct immersion cooling has been considered as one of the promising methods to cool high power density chips. A fluorocarbon liquid such as FC-72, which is chemically and electrically compatible with microelectronic components, is known to be a proper coolant for direct immersion cooling. However, boiling in this dielectric fluid is characterized by its small value of the critical heat flux. In this experimental study, we tried to enhance the critical heat flux by increasing the nucleate boiling area in the heat spreader (Conductive Immersion Cooling Module). Heat nux of 2 MW/㎡ was successfully removed at the heat source temperature below 78$^{\circ}C$ in FC-72. Some modified boiling curves at high heat flux were obtained from these modules. Also, the concept of conduction path length is very important in enhancing the critical heat flux by increasing the heat spreader surface area where nucleate boiling occurs.

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

Pool Boiling Heat Transfer Coefficients of Hydrocarbon Refrigerants on Various Enhanced Tubes (열전달 촉진관에서 탄화수소계 냉매의 풀비등 열전달계수)

  • Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1017-1024
    • /
    • 2006
  • In this work, pool boiling heat transfer coefficients (HTCs) of five hydrocarbon refrigerants of propylene, propane, isobutane, butane and dimethylether (DME) were measured at the liquid temperature of $7^{\circ}C$ on a 26 fpi low fin tube, Turbo-B, and Thermoexcel-E tubes. All data were taken from 80 to $10kW/m^2$ in the decreasing order of heat flux. The data of hydrocarbon refrigerants showed a typical trend that nucleate boiling HTCs obtained on enhanced tubes also increase with the vapor pressure. Fluids with lower reduced pressure such as DME, isobutane, and butane took more advantage of the heat transfer enhancement mechanism of enhanced tubes than those enhancement ratios of $2.3\sim9.4$ among the tubes tested due to its sub-channels and re-entrant cavities.

Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid (암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • The power cycle using ammonia-water mixture as a working fluid is a possible way to improve efficiency of the system of low-temperature source. In this work thermodynamic performance of the ammonia-water regenerative Rankine cycle with partial-boiling flow is analyzed for purpose of extracting maximum power from the source. Effects of the system parameters such as mass fraction of ammonia, turbine inlet pressure or ratio of partial-boiling flow on the system are parametrically investigated. Results show that the power output increases with the mass fraction of ammonia but has a maximum value with respect to the turbine inlet pressure, and is able to reach 22 kW per unit mass flow rate of source air at $180^{\circ}C$.

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

A Study on Boiling Heat Transfer from Circular Single Fin (단일 원형휜에서의 비등열전달에 관한 연구)

  • Seoh J. I.;Yim J. S;Lee J. H.;Park M. H.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.3
    • /
    • pp.18-30
    • /
    • 1982
  • The heat transfer process with boiling on a fin cannot be treated in a conventional manner of assuming a constant heat transfer coefficient. This report proposes a simplified method for determining fin performance. The heat transfer coefficients in boiling region is approximated by n ty power function of superheat. The results yield the temperature gradient as a function of superheat, fin width, and thermal conductivity of the fin. Computed results for water boiling on fin compare favorably with those obtained from a small-increment numerical solution.

  • PDF

A Thermal hydraulic Investigation on ADSR Liquid Lead Target

  • Kim, Ju Y.;Byung G. Huh;Chang H, Chung;Tae Y. song;Park, Won S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.666-671
    • /
    • 1998
  • Computational fluid dynamics(CFD) code FLUENT[11 was used to simulate the thermal hydraulic processes occuring in conceptual design of the accelerator-driven subcritical reactor(ADSR) liquid lead target. The purpose of the analysis is to investigate the thermal hydraulic characteristics of liquid lead as ADSR target material with various target geometries and injection locations of proton beam. In the calculation analysis, the local temperature of the liquid lead target rises to the boiling temperature very rapidly When the proton beam is injected from the bottom of the target system, the duration time to reach the boiling temperature is longer and the temperature distribution is flatter than other cases.

  • PDF

A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.58-66
    • /
    • 2015
  • This paper aims to compare the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding. The working fluid has boiling point below boiling water and works in low-temperature sources between $80-120^{\circ}C$ which can be produced from waste heat, solar-thermal energy and geothermal energy etc. The experiment on ORC machine reveals that the suitability of high pressure pump for working fluid has result on the efficiency of work. In addition, Thermodynamics theory on P-h diagram also presented the effect of heat sources' temperature and flow rate on any work. Thus, the study and design on ORC machine has to concern mainly on pressure pump, flow rate and optimized temperature. Result experiment and calculate ORC Machine using centrifugal Turbine efficiency better than Tesla turbine 30% but Tesla Turbine is cheaper and easily structure. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

Experimental Study on Effect of Water-based Iron(III) Oxide Nanofluid on Minimum Film Boiling Point During Quenching of Highly Heated Test Specimen (고온 시편의 급랭 시 산화철 나노유체가 최소막비등점에 미치는 영향에 대한 실험적 연구)

  • Jeong, Chan Seok;Hwang, Gyeong Seop;Lee, Chi Young
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.128-136
    • /
    • 2020
  • In the present experimental study, the effect of water-based iron(III) oxide nanofluid on the MFB(Minimum Film Boiling) point during quenching was investigated. As the highly heated test specimen, the cylindrical stainless steel rod was used, and as the test fluids, the water-based iron(III) oxide nanofluids of 0.001 and 0.01 vol% concentrations were prepared with the pure water. To examine the effect of location in the test specimen, the thermocouples were installed at the bottom and middle of wall, and center in the test specimen. Through a series of experiments, the experimental data about the influences of nanofluid concentrations, the number of repeated experiments, and locations in the test specimen on the reaching time to MFB point, MFBT(Minimum Film Boiling Temperature), and MHF(Minimum Heat Flux) were obtained. As a result, with increasing the concentration of nanofluid and the number of repeated experiments, the reaching time to MFB point was reduced, but the MFBT and MHF were increased. In addition, it was found that the effect of water-based iron(III) oxide nanofluid on the MFB point at the bottom of wall in the test specimen was observed to be greater than that at the middle of wall and center. In the present experimental ranges, as compared with the pure water, the water-based iron(III) oxide nanofluid showed that the maximum reduction of reaching time to MFB point was about 53.6%, and the maximum enhancements of MFBT and MHF were about 31.1% and 73.4%, respectively.