• Title/Summary/Keyword: boiler efficiency

Search Result 281, Processing Time 0.036 seconds

Development of monitoring system for demonstration test of solar energy system (태양에너지 시스템의 실증시험을 위한 모니터링 시스템 개발)

  • Yang, Dong-Jo;Kim, Jae-Yeol;Oh, Yool-Kwon;Kim, Jin-Heung;Chung, Nak-Kyu;Cho, Guem-Bae
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.723-726
    • /
    • 2005
  • The application of solar energy, in the field of alternative energy, was on the increase tendency. In the case of advanced nations, through continuous R&D, solar hot water heater with high efficiency has been used for the house and the industrial process on business, advanced nations were reached up the experimental stage of solar generation system. But, the actual circumstance of the domestic has been not accomplished the popularization of solar hot water heater and the settlement of it which is the fundamental stage of the solar energy usage. This trouble, the domestic was flooded with small enterprise for producing solar hot water heater, was caused by the popularization and the production without verification of performance. To supply the monitoring program for evaluating solar hot water heater, this research was purpose to improve the technical development of the enterprise for producing solar-heat hot-water-boiler and served as an aid for the enlargement and the popularization on solar energy.

  • PDF

Thermal performance of solar cooling and hot water for the demonstration system (태양열 실증 시스템의 냉방 및 급탕 일일 열성능)

  • Lee, Ho;Kim, Sang-Jin;Joo, Hong-Jin;Kwak, Hee-Youl
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.564-569
    • /
    • 2007
  • This study describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about 350㎡ was heated and cooled with the solar system. The system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, subsidiary tank, absorption chiller, chiller storage tank, and cooling tower. The results of the experimental study indicated that the total solar energy gain as daily performance on a sunny day (August 25, 2007) with total daily radiation of $606\;W/m^2$ was 671 kWh, the collecting efficiency of 55%. In the case of supplies to heat source more than $83^{\circ}C$, cooling time operated by solar was driven 8.8 hours, cooling energy generated by solar system was 179 kWh and the solar cooling fraction was 79.2%, and hot water supplied with surplus heat source by the solar system was 201 kWh.

  • PDF

A Study on the Flow Characteristics of Circular and Swirl Jets (원형 및 스월제트의 유동특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2014
  • The comparison of the flow characteristics between circular and swirl jets which were controlled by the spinner attachment inside the airtube were conducted in this study. Swirl jet means a flow in whirls by mixing the flow of axial and tangential direction. Swirl flow has been used for the improvement of the combustion efficiency in the combustor. This flow is controlled by the spinner which has several vanes inclined by certain angles to the axial direction. In this study, angle of vane $30^{\circ}$ and diameter ratio of outlet to inlet of the airtube 0.73 were made. These spec. should find on the general gun type burner built in the domestic small size boiler. As the flow characteristics, axial and tangential velocities were measured by using the 2-D hot-wire velocimeter system and analyzed statistically. And also this research conducted a practical experiment considering to the attached belongings likes as ignitor, nozzle etc. on the airtube of the gun type burner. As a result, swirl occurred at the occasion of beingness and flow region extended considerably toward the radial direction. But effect of swirl did not transmit to the downstream. And the complicated flow was appeared regardless of the existence of spinner because of the effect of belongings.

Biomass Energy in the USA: A Literature Review (II) - Marketing and Policies for Green Power Production with Environmental Attributes - (미국 에너지 시장에 공급되는 바이오에너지에 관한 연구(II) - 환경친화적 녹색전기의 마케팅 및 정부지원책에 대하여 -)

  • Kim, Yeong-Suk;Gorman, Thomas
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.97-110
    • /
    • 2005
  • This paper is the second part of a literature review describing the current status of biomass energy use in the USA. The bioenergy technologies that convert biomass resources to a form of energy were presented, in particular focused on existing coal fired boiler, high efficiency gasification combined cycle. We presented latest biomass power energy supply, economic issues such as its production and plant investment cost in the Part I. In the Part II, our review summarized policy and market issues for electricity consumers, benefits from biomass power which could offer an alternative to conventional energy sources in the form of environmental, rural economic growth, and national energy security in the USA.

Cooling and Heating Energy Performance and Cost Analysis of Vertical Closed-loop Geothermal Heat Pump Coupled with Heat Storage Tank Compared to Conventional HVAC System (일반공조 시스템 대비 축열조와 연동된 수직밀폐형 지열히트펌프의 냉난방 에너지 성능 및 경제성 분석)

  • Kim, Min-Ji;Do, Sung-Lok;Choi, Jong-Min;Lee, Kwang Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.81-87
    • /
    • 2018
  • Among various types of geothermal heat pump systems, Vertical Closed-Loop Geothermal Heat Pump (VGSHP) has received increasing attention due to a variety of advantages such as the potential to be installed in a relatively small space and improved energy efficiency. In this research, the performance of VGSHP system coupled with heat storage tank was evaluated, by analyzing operational behavior of heat storage tank, the variations of heat pump energy performance due to the connection with heat storage tank, part load ratios characteristics of heat pump and the corresponding energy cost, compared to chiller and boiler based conventional system. The results of this study showed that the VGSHP system coupled with heat storage tank showed an energy saving effect of about 18% for cooling and about 73% for heating, and annual heating/cooling energy cost reduction of 43,000,000 KRW ($ 39,000), compared to the conventional air conditioning system. In addition, after considering both energy cost and initial investment cost including equipment, installation and auxiliary device expenses, payback period of approximately 11.8 years was required.

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.

Computational Analysis of Nitrogen Oxides Reduction in Exhaust Gas from Livestock Manure Solid Fuel Using Urea-based Selective Non-catalytic Reduction (우레아 기반 SNCR 적용에 따른 가축분뇨 고체연료 배기가스 NOx 저감에 대한 전산해석)

  • Donghwan Shin;Hyeongwon Lee;Junghwan Kim;Jongyoung Jo
    • New & Renewable Energy
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2024
  • Livestock manure solid fuel has been studied as a promising domestic energy resource for reducing greenhouse gas emissions in agricultural fields. To successfully commercialize this technology, the environmental facilities require optimization in accordance with domestic environmental standards. In the present study, a computational analysis model of a livestock manure solid fuel boiler system was developed using Aspen Plus® to investigate nitrogen oxides (NOx) emissions and NOx conversion efficiency using urea-based selective non-catalytic reduction (SNCR). All data were compared across different livestock species and simulated at various operating temperatures. The simulation showed that NOx emissions were the highest from chicken manure and the lowest from swine manure. However, when converted to an oxygen concentration of 12%, NOx emissions were the highest from cattle manure. Dominant factors influencing NOx emissions through a range of temperatures were analyzed, and the optimal operating temperature range (875-950℃) was derived.

A Study on the Cross Subsidization of Energy Industries in Korea (에너지 산업(産業)의 교차보조(交叉補助)에 관한 연구(硏究))

  • Chung, Hee-Yung;Kang, Hee-Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.17-22
    • /
    • 2006
  • Both of district heating(DH) system and natural gas(NG) supply system have benefits in clean energy supply and having energy efficiency and savings. The issue of duplicate investment and supply requirement of only for cook occur several conflicts such as destruction of the Beneficiary Pays Principle and Cross Subsidization, etc. Under the circumstance, the purposes of this research are to consider several issues of cross subsidization in NG and DH industries and to present the following alternatives for resolving related problems. First of all, a charging mechanism in the energy cost must be improved so as to maintain the positive relation between cost and benefit. That is, the beneficiary-pay principle must be strictly applied. Secondly, the extended supply of DH through HOB(Heat Only Boiler) must be strictly limited. Finally, we need to improve efficiency for the benefit of market participants.

  • PDF

Performance Analysis of Methane Fueled Marine Solid Oxide Fuel Cell and Steam Turbine Hybrid Power System (선박동력용 SOFC/ST 하이브리드시스템의 성능 평가)

  • Lee, Kyung-Jin;Oh, Jin-Suk;Kim, Sun-Hee;Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.590-599
    • /
    • 2011
  • The electrification of the waste heat of fuel cell is necessary to enhance the efficiency of fuel cell system. For this purpose, the SOFC/ST(Solid oxide fuel cell/Steam turbine) hybrid system is suitable. The purpose of this work is to predict the performance of methane fueled SOFC/ST hybrid power system and to analyze the influence of operating temperature of stack, current density of stack, combustor outlet gas temperature, and boiler outlet gas temperature. According to the analysis, it is proved that making the best use of the waste heat of stack and minimizing the fuel consumption of combustor are essential for the high-efficiency of SOFC/ST hybrid system.

Creep Damage and Hardness Properties for 9Cr Steel by SP-Creep Test Technique (SP-Creep 시험기법에 의한 9Cr강의 크리프 손상과 경도 특성)

  • Baek, Seung-Se;Lyu, Dae-Young;Kim, Jeong-Ki;Kwon, Il-Hyun;Chung, Se-Hee;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.105-110
    • /
    • 2001
  • It has recently been raised main issue how solve the problem of insufficient energy. One of the solution is to increase the thermal efficiency of power generation system. For the purpose of high efficiency, it is necessary to increase the steam temperature and pressure. So, the use of modified $9{\sim}12%Cr$ steel having superior creep rupture strength and oxidation resistance is required to endure such severe environment. The evaluation of creep properties of those heat resistance material is very important to secure the reliability of high temperature and pressure structural components. Since creep properties are determined by microstructural change such as carbide precipitation and coarsening, It is certain that there are some relationship between creep properties and hardness affected by microstructure. In this study, SP-Creep ruptured test for newly developed 9Cr steel being used as boiler valve material was performed, and creep properties of the material were evaluated. Also, hardness test were performed and hardness results were related to the creep properties such as LMP and creep strength to verify the availability of SP-Creep test as creep test method.

  • PDF