• Title/Summary/Keyword: body-fix

Search Result 52, Processing Time 0.016 seconds

Characterization of Filamentous Cyanobacteria Encapsulated in Alginate Microcapsules (알긴산염 마이크로캡슐 내부에 동결보존된 사상체 남세균의 특성 연구)

  • Park, Mirye;Kim, Z-Hun;Nam, Seung Won;Lee, Sang Deuk;Yun, Suk Min;Kwon, Dae Ryul;Lee, Chang Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Cyanobacteria are microorganisms which have important roles in the nitrogen cycle due to their ability to fix nitrogen in water and soil ecosystems. They also produce valuable materials that may be used in various industries. However, some species of cyanobacteria may limit the use of water resources by causing harmful algal blooms in water ecosystems. Many culture collection depositories provide cyanobacterial strains for research, but their systematic preservation is not well-developed in Korea. In this study, we developed a method for the cryopreservation of the cyanobacteria Trichormus variabilis (syn. Anabaena variabilis), using alginate microcapsules. Two approaches were used for the experiments and their outputs were compared. One of the methods involved the cryopreservation of cells using only a cryoprotectant and the other used the cryoprotectant within microcapsules. After cryopreservation for 35 days, cells preserved with both methods were successfully regenerated from the initial 1.0 × 105 cells/ml to a final concentration of 6.7 × 106 cells/ml and 1.1 × 107 cells/ml. Irregular T. variabilis shapes were found after 14 days of regeneration. T. variabilis internal structures were observed by transmission electron microscopy (TEM), revealing that lipid droplets were reduced after cryopreservation. The expression of the mreB gene, known to be related to cell morphology, was downregulated (54.7%) after cryopreservation. Cryopreservation using cryoprotectant alone or with microcapsules is expected to be applicable to other filamentous cyanobacteria in the future.

Development of Supplemental Equipment to Reduce Movement During Fusion Image Acquisition (융합영상(Fusion image)에서 움직임을 줄이기 위한 보정기구의 개발)

  • Cho, Yong Gwi;Pyo, Sung Jae;Kim, Bong Su;Shin, Chae Ho;Cho, Jin Woo;Kim, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.84-89
    • /
    • 2013
  • Purpose: Patients' movement during long image acquisition time for the fusion image of PET-CT (Positron Emission Tomography-Computed Tomography) results in unconformity, and greatly affects the quality of the image and diagnosis. The arm support fixtures provided by medical device companies are not manufactured considering the convenience and safety of the patients; the arm and head movements (horizontal and vertical) during PET/CT scan cause defects in the brain fundus images and often require retaking. Therefore, this study aims to develop patient-compensation device that would minimize the head and arm movements during PET/CT scan, providing comfort and safety, and to reduce retaking. Materials and Methods: From June to July 2012, 20 patients who had no movement-related problems and another 20 patients who had difficulties in raising arms due to shoulder pain were recruited among the ones who visited nuclear medicine department for PET Torso scan. By using Patient Holding System (PHS), different range of motion (ROM) in the arm ($25^{\circ}$, $27^{\circ}$, $29^{\circ}$, $31^{\circ}$, $33^{\circ}$, $35^{\circ}$) was applied to find the most comfortable angle and posture. The manufacturing company was investigated for the permeability of the support material, and the comfort level of applying bands (velcro type) to fix the patient's head and arms was evaluated. To find out the retake frequency due to movements, the amount of retake cases pre/post patient-compensation were analyzed using the PET Torso scan data collected between January to December 2012. Results: Among the patients without movement disorder, 18 answered that PHS and $29^{\circ}$ arm ROM were the most comfortable, and 2 answered $27^{\circ}$ and $31^{\circ}$, respectively. Among the patients with shoulder pain, 15 picked $31^{\circ}$ as the most comfortable angle, 2 picked $33^{\circ}$, and 3 picked $35^{\circ}$. For this study, the handle was manufactured to be adjustable for vertical movements. The material permeability of the patient-compensation device has been verified, and PHS and the compensation device were band-fixed (velcro type) to prevent device movements. A furrow was cut for head fixation to minimize the head and neck movements, fixing bands were attached for the head, wrist, forearm, and upper arm to limit movements. The retake frequency of PET Torso scan due to patient movements was 11.06% (191 cases/1,808 patients) before using the movement control device, and 2.65% (48 cases/1,732 patients) after using the device; 8.41% of the frequency was reduced. Conclusion: Recent change and innovation in the medical environment are making expensive medical image scans, and providing differentiated services for the customers is essential. To secure patient comfort and safety during PET/CT scans, ergonomic patient-compensation devices need to be provided. Therefore, this study manufactured a patientcompensation device with vertically adjustable ergonomic ROM according to the patient's body shape and condition during PET Torso scan. The defects in the basal ganglia images due to arm movements were reduced, and retaking was decreased.

  • PDF