• Title/Summary/Keyword: body tracking

Search Result 301, Processing Time 0.027 seconds

Characteristics Comparison of Motion Controllers through Experiments (실험을 통한 모션제어기의 특성비교)

  • Jung, Seung-Hyun;Wang, Jun;Han, Chang-Wook;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1094-1102
    • /
    • 2008
  • Through the motion control experiment using Industrial Emulator(Model 220 by ECP), the performance comparison of three kinds of controllers such as PID, RIC and LQR was carried out. It was shown that RIC has the best performance in the presence of disturbances such as step one, sinusoidal one and Coulomb friction for the rigid body. LQR using feedback state variables has the best tracking performance far the flexible body. The performance of PID controller is low compared to other controllers, but the design process is simple. The most advanced controller is LQR. In order to attenuate disturbance, an additional state observer should be used to estimate it, making more complex control system. RIC lies between PID and LQR in view of complexity of design. Even though RIC is not complicated, it has good disturbance rejection ability and less tracking error. By considering these aspects, the RIC is suggested as high precision controller to be used in motion control system.

Position Tracking of Underwater Robot for Nuclear Reactor Inspection using Color Information (색상정보를 이용한 원자로 육안검사용 수중로봇의 위치 추적)

  • 조재완;김창회;서용칠;최영수;김승호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2259-2262
    • /
    • 2003
  • This paper describes visual tracking procedure of the underwater mobile robot for nuclear reactor vessel inspection, which is required to find the foreign objects such as loose parts. The yellowish underwater robot body tend to present a big contrast to boron solute cold water of nuclear reactor vessel, tinged with indigo by Cerenkov effect. In this paper, we have found and tracked the positions of underwater mobile robot using the two color informations, yellow and indigo. The center coordinates extraction procedures is as follows. The first step is to segment the underwater robot body to cold water with indigo background. From the RGB color components of the entire monitoring image taken with the color CCD camera, we have selected the red color component. In the selected red image, we extracted the positions of the underwater mobile robot using the following process sequences: binarization labelling, and centroid extraction techniques. In the experiment carried out at the Youngkwang unit 5 nuclear reactor vessel, we have tracked the center positions of the underwater robot submerged near the cold leg and the hot leg way, which is fathomed to 10m deep in depth.

  • PDF

Geometric Path Tracking for a Fish Robot (물고기 로봇의 기하학적 경로 추종)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.906-912
    • /
    • 2014
  • The study of fish robot is a main subject that are related with the propulsive force comparison using a varying amplitude and frequency for body and tail motion trajectory, and the quick turn using a proper trajectory function. In this study, when a fish robot thrusts forward, feedback control is difficult to apply for a fish robot, because body and tail joints as a sine wave are rolled. Therefore, we detect the virtual position based on the path of the fish robot, define the angle errors using the detected position and the look-ahead point on the given path, and design a controller to track given path. We have found that the proposed method is useful through the computer simulations.

Comparison of Cervical Musculoskeletal Kinematics in Two Different Postures of Primate During Voluntary Head Tracking

  • Park, Hyeonki;Emily Keshner;Barry W. Peterson
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1140-1147
    • /
    • 2003
  • We have examined the effect on neck-muscle activation of altering whole body posture. A Rhesus monkey (Macaca mulatta) was trained to produce sinusoidal (0.25 Hz) head tracking movements in the sagittal plane when seated with trunk and head vertical or while standing in the quadrupedal position. Video-fluoroscopic images of cervical vertebral motion, and electromyographic (EMG) responses were recorded simultaneously. Results demonstrated that vertebral motion varied with body posture, occurring synchronously between all joints in the upright position and primarily at skull-$C_1$ when in the quadrupedal position. Muscle EMG activation was significantly greater (P<0.001) in the quadrupedal position than when upright for all muscles except semispinalis cervicis. Peak activation of all the muscles occurred prior to peak head extension in the quadrupedal position, suggesting synchronous activity between muscles. Data suggest that, when upright, muscles were activated in functional groupings defined by their anatomical arrangement. In the quadrupedal position, gravity acting on the horizontally oriented head produced greater activation and a collective response of the muscles.

A Design on Sub-Motion System for Full Body Tracking (풀 바디 트래킹을 위한 서브 모션 시스템 설계)

  • Kim, Hoyong;Wu, Guoqing;Sung, Yunsick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.889-891
    • /
    • 2018
  • 가상현실 (Virtual Reality, VR) 컨텐츠가 다양해지면서 사용자들의 관심도 높아지고 있다. 초기 VR 컨텐츠는 헤드 마운티드 디스플레이 (Head Mounted Display, HMD)와 컨트롤러만 사용한다. 사용자의 요구가 높아지면서 현실적인 컨텐츠 구현을 위해서 사용자의 신체 움직임으로 제어하는 풀 바디 트래킹(Full Body Tracking) 기술이 도입되고 있다. 머리에 착용하는 HMD와 양손으로 제어하는 두 개의 컨트롤러 뿐만 아니라 모션캡쳐장비, 트래커 장비를 사용자의 다양한 위치에 착용시켜, 세밀한 움직임 트래킹이 가능해졌다. 본 연구에서 서브 모션 기반의 움직임 추적 방법과 이를 기반한 서브모션 시스템을 제안한다. 서브모션 시스템은 VR 컨텐츠에 사용되는 사용하는 센서 위치를 VR캐릭터의 대응되는 위치에 출력하는 방식이 아닌, 사용자의 움직임에 따라 다양한 센서 위치 변화를 인식하고, 이를 기반으로 VR에서 사전에 지정된 모션을 인식 및 출력한다. 사용자의 움직임을 세분화하여 각각의 연속된 서브모션들로 인식하고, 각각의 서브 모션에서 연속적으로 인식 가능한 서브 모션을 분기를 통해 정의하고 인식함으로써 다양하고 자유도 높은 모션 처리가 가능하다. 선행 기술들의 문제점인 고정된 데미지 방식 및 부자연스러운 모션을 해결하고 사용자에게 실제와 같은 동작을 취하도록 유도하여 몰입감등을 부여할 수 있다. 서브 모션들을 자동적으로 생성하는 시스템을 통해 풀 바디 트래킹 VR 컨텐츠에 적용 가능한 엔진을 연구 및 개발하여 해당 산업의 발전에 이바지하고자 한다.

3D Motion Capture based Physical Fitness using Full Body Tracking Suit

  • Imran Ghani;Emily Hattman;David T. Smith;Muhammad Hasnain;Israr Ghani;Seung Ryul Jeong
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.47-56
    • /
    • 2023
  • This paper presents an approach to exercise that utilizes motion capture through the Rokoko Smart Suit. With the emergence of Covid-19, physical fitness levels have declined due to restrictions on in-person fitness classes and gym closures. To maintain physical activity, many individuals have turned to mobile applications and streaming videos. However, home workouts often lack the motivation and experience found in gyms, classes, or community centers, particularly with the presence of coaches and instructors. Additionally, instructors find it challenging to convey precise postures to their online students, and vice versa. To address this issue, the researchers propose the use of a full-body tracking suit like the Rokoko Smart Suit, which enables instructors to present a more realistic approach to physical activity. The Rokoko Smart Suit offers a 3D view of the instructor, eliminating the limitations of camera scope when streaming on platforms like Zoom or MS Teams. This technology enhances the at-home workout experience, and the incorporation of 3D virtual reality features can further elevate the realism of a workout.

Moving object segmentation and tracking using feature based motion flow (특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적)

  • 이규원;김학수;전준근;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1998-2009
    • /
    • 1998
  • An effective algorithm for tracking rigid or non-rigid moving object(s) which segments local moving parts from image sequence in the presence of backgraound motion by camera movenment, predicts the direction of it, and tracks the object is proposed. It requires no camera calibration and no knowledge of the installed position of camera. In order to segment the moving object, feature points configuring the shape of moving object are firstly selected, feature flow field composed of motion vectors of the feature points is computed, and moving object(s) is (are) segmented by clustering the feature flow field in the multi-dimensional feature space. Also, we propose IRMAS, an efficient algorithm that finds the convex hull in order to cinstruct the shape of moving object(s) from clustered feature points. And, for the purpose of robjst tracking the objects whose movement characteristics bring about the abrupt change of moving trajectory, an improved order adaptive lattice structured linear predictor is used.

  • PDF

A Study on the Development of a Program to Body Circulation Measurement Using the Machine Learning and Depth Camera

  • Choi, Dong-Gyu;Jang, Jong-Wook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2020
  • The circumference of the body is not only an indicator in order to buy clothes in our life but an important factor which can increase the effectiveness healing properly after figuring out the shape of body in a hospital. There are several measurement tools and methods so as to know this, however, it spends a lot of time because of the method measured by hand for accurate identification, compared to the modern advanced societies. Also, the current equipments for automatic body scanning are not easy to use due to their big volume or high price generally. In this papers, OpenPose model which is a deep learning-based Skeleton Tracking is used in order to solve the problems previous methods have and for ease of application. It was researched to find joints and an approximation by applying the data of the deep camera via reference data of the measurement parts provided by the hospitals and to develop a program which is able to measure the circumference of the body lighter and easier by utilizing the elliptical circumference formula.

Key Pose-based Proposal Distribution for Upper Body Pose Tracking (상반신 포즈 추적을 위한 키포즈 기반 예측분포)

  • Oh, Chi-Min;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Pictorial Structures is known as an effective method that recognizes and tracks human poses. In this paper, the upper body pose is also tracked by PS and a particle filter(PF). PF is one of dynamic programming methods. But Markov chain-based dynamic motion model which is used in dynamic programming methods such as PF, couldn't predict effectively the highly articulated upper body motions. Therefore PF often fails to track upper body pose. In this paper we propose the key pose-based proposal distribution for proper particle prediction based on the similarities between key poses and an upper body silhouette. In the experimental results we confirmed our 70.51% improved performance comparing with a conventional method.

Real-Time Human Tracking Using Skin Area and Modified Multi-CAMShift Algorithm (피부색과 변형된 다중 CAMShift 알고리즘을 이용한 실시간 휴먼 트래킹)

  • Min, Jae-Hong;Kim, In-Gyu;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1132-1137
    • /
    • 2011
  • In this paper, we propose Modified Multi CAMShift Algorithm(Modified Multi Continuously Adaptive Mean Shift Algorithm) that extracts skin color area and tracks several human body parts for real-time human tracking system. Skin color area is extracted by filtering input image in predefined RGB value range. These areas are initial search windows of hands and face for tracking. Gaussian background model prevents search window expending because it restricts skin color area. Also when occluding between these areas, we give more weights in occlusion area and move mass center of target area in color probability distribution image. As result, the proposed algorithm performs better than the original CAMShift approach in multiple object tracking and even when occluding of objects with similar colors.